
Stateflow and Stateflow
Coder

For Use with Simulink®

Modeling

Simulation

Implementation

API
Version 6

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Stateflow and Stateflow Coder API
© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 Online only Revised for Stateflow 6.0 (Release 14)
October 2004 Online only Revised for Stateflow 6.1 (Release 14SP1)
March 2005 Online only Revised for Stateflow 6.21 (Release 14SP2)
September 2005 Online only Revised for Stateflow 6.3 (Release 14SP3)
March 2006 Online only Revised for Stateflow 6.4 (Release R2006a)

Contents

Using the API

1
Overview of the Stateflow API . 1-3

What Is the Stateflow API? . 1-3
Stateflow API Object Hierarchy . 1-4
Getting a Handle on Stateflow API Objects 1-6
Using API Object Properties and Methods 1-7
API References to Properties and Methods 1-8

Quick Start for the Stateflow API 1-9
Create a New Model and Chart . 1-9
Access the Model Object . 1-9
Access the Chart Object . 1-10
Create New Objects in the Chart . 1-11

Accessing the Properties and Methods of Objects 1-17
Naming Conventions for Properties and Methods 1-17
Using Dot Notation with Properties and Methods 1-17
Using Function Notation with Methods 1-18

Displaying Properties and Methods 1-20
Displaying Properties . 1-20
Displaying the Names of Methods . 1-20
Displaying Property Subproperties 1-21
Displaying Enumerated Values for Properties 1-22

Creating and Destroying API Objects 1-23
Creating Stateflow Objects . 1-23
Establishing an Object’s Parent (Container) 1-25
Destroying Stateflow Objects . 1-26

Accessing Existing Stateflow Objects 1-27
Finding Objects . 1-27
Finding Objects at Different Levels of Containment 1-28
Retrieving Recently Selected Objects 1-30

v

Getting and Setting the Properties of Objects 1-31

Copying Objects . 1-33
Accessing the Clipboard Object . 1-33
copy Method Limitations . 1-33
Copying by Grouping (Recommended) 1-34
Copying Objects Individually . 1-35

Using the Editor Object . 1-37
Accessing the Editor Object . 1-37
Changing the Stateflow Display . 1-37

Entering Multiline Labels . 1-39

Creating Default Transitions . 1-40

Making Supertransitions . 1-41

Creating a MATLAB Script of API Commands 1-43

API Properties and Methods by Use

2
Reference Table Column Descriptions 2-3

Access Methods . 2-4

Code Generation and Target Building 2-5
Code Generation and Build Methods 2-5
Code Generation Properties . 2-6
Custom Code Properties . 2-8

Display Control . 2-10
Display Methods . 2-10
Display Properties . 2-10

vi Contents

Graphical Appearance . 2-11
Color Properties . 2-11
Drawing Properties . 2-12
Font Properties . 2-13
Position Properties . 2-16
Text Properties . 2-19

Creating and Deleting Objects . 2-20

Containment . 2-21

Data Definition Properties . 2-22

Debugging Properties . 2-25

Identifiers . 2-28

Interface to Simulink . 2-30

Machine (Model) Identifier Properties 2-34

Truth Table Construction Properties 2-35

API Properties and Methods — By Category

3
Reference Table Columns . 3-5

Constructor Methods . 3-6

Editor Properties . 3-7

Editor Methods . 3-8

Clipboard Methods . 3-9

vii

All Object Methods . 3-10

Root Methods . 3-11

Machine Properties . 3-12

Machine Methods . 3-16

Chart Properties . 3-17

Chart Methods . 3-25

State Properties . 3-26

State Methods . 3-30

Box Properties . 3-32

Box Methods . 3-34

Graphical Function Properties . 3-35

Graphical Function Methods . 3-38

Truth Table Properties . 3-39

Truth Table Methods . 3-42

Truth Table Chart Properties . 3-43

Truth Table Chart Methods . 3-46

Embedded MATLAB Function Properties 3-47

Embedded MATLAB Function Methods 3-49

viii Contents

Note Properties . 3-50

Note Methods . 3-52

Transition Properties . 3-53

Transition Methods . 3-57

Junction Properties . 3-58

Junction Methods . 3-59

Data Properties . 3-60

Data Methods . 3-65

Event Properties . 3-66

Event Methods . 3-69

Target Properties . 3-70
CodeFlagsInfo Property of Targets . 3-72

Target Methods . 3-75

API Methods — Alphabetical List

4
List of API Methods . 4-2

Index

ix

x Contents

1

Using the API

The procedures and conceptual information in this chapter explain the basic
operations of the Stateflow® Application Program Interface (API). It includes
the following sections:

Overview of the Stateflow API
(p. 1-3)

Introduces you to concepts you need
to know to understand the Stateflow
API and how to use it to create and
edit Stateflow diagrams.

Quick Start for the Stateflow API
(p. 1-9)

Step-by-step instructions for
constructing a Stateflow diagram
with the Stateflow API.

Accessing the Properties and
Methods of Objects (p. 1-17)

Describes the conventions used in
naming the properties and methods
of Stateflow API objects and the
rules for using them in commands.

Displaying Properties and Methods
(p. 1-20)

Information on calling built-in
methods for listing properties and
methods for each object type.

Creating and Destroying API Objects
(p. 1-23)

Information on creating and
destroying any Stateflow object
with the Stateflow API, and how to
connect one object with another.

Accessing Existing Stateflow Objects
(p. 1-27)

Create handles to any object in an
existing Stateflow diagram and use
them to manipulate actual Stateflow
objects in a Stateflow diagram.

1 Using the API

Copying Objects (p. 1-33) Learn the copy and paste procedure
for copying Stateflow objects from
one environment to another.

Using the Editor Object (p. 1-37) Access the Editor object for a
Stateflow diagram to perform
operations that are graphical only,
such as changing fonts and colors.

Entering Multiline Labels (p. 1-39) The Stateflow API provides two
techniques to enter text with more
than one line for the labels of states
and transitions.

Creating Default Transitions
(p. 1-40)

The Stateflow API provides
two means for making default
transitions.

Making Supertransitions (p. 1-41) Describes how to create
supertransitions.

Creating a MATLAB Script of API
Commands (p. 1-43)

You can execute your API commands
in a single MATLAB® script.

1-2

Overview of the Stateflow API

Overview of the Stateflow API
The Stateflow API is a textual programming interface with the Stateflow
diagram editor from the MATLAB Command Window. Before you get started
with the “Quick Start for the Stateflow API” on page 1-9, read the topics in
this section for an introduction to some new concepts that are part of the
Stateflow API:

• “What Is the Stateflow API?” on page 1-3 — Defines and describes the
nature of the Stateflow API.

• “Stateflow API Object Hierarchy” on page 1-4 — Introduces you to the
hierarchy of objects in the Stateflow API, which mimics the hierarchy of
objects in Stateflow.

• “Getting a Handle on Stateflow API Objects” on page 1-6 — Introduces you
to the concept of a handle that is used to represent a Stateflow API object
in MATLAB.

• “Using API Object Properties and Methods” on page 1-7 — Introduces you
to the properties and methods of each API object. Properties and methods
do the work of the API to create and change Stateflow diagrams.

• “API References to Properties and Methods” on page 1-8 — Introduces
you to the extensive reference information available in this guide on each
individual property and method.

Caution You cannot undo any operation to the Stateflow diagram editor
performed through the Stateflow API. If you do perform an editing
operation through the API, the undo and redo buttons are disabled from
undoing and redoing any prior operations.

What Is the Stateflow API?
The Stateflow Application Programming Interface (API) is a tool of
convenience that lets you create or change Stateflow diagrams with MATLAB
commands. By placing Stateflow API commands in a MATLAB script, you can
automate Stateflow diagram editing processes in a single command.

1-3

1 Using the API

There are many possible applications for the Stateflow API. Here are some:

• Create a script that performs common graphical edits that makes editing of
Stateflow diagrams easier.

• Create a script that immediately creates a repetitive "base" Stateflow
diagram.

• Create a script that produces a specialized report of your model.

The Stateflow API consists of objects that represent actual Stateflow objects.
For example, an API object of type State represents a Stateflow state, an API
object of type Junction represents a Stateflow junction, and so on.

Each API object has methods and properties you use to perform editing
operations on it. The correspondence between API object and Stateflow object
is so close that what you do to a Stateflow API object affects the object it
represents in the Stateflow diagram editor, and what you do to a graphical
object in the Stateflow diagram editor affects the Stateflow API object that
represents it.

The following topics introduce you to the objects, properties, and methods
of the Stateflow API.

Stateflow API Object Hierarchy
Stateflow API objects represent actual Stateflow objects in a Stateflow
diagram. Like Stateflow objects, API objects contain or are contained by other
Stateflow objects. For example, if state A contains state B in the Stateflow
diagram editor, then the API object for state A contains the API object for
state B. The following diagram depicts the Stateflow API hierarchy of objects:

1-4

Overview of the Stateflow API

Rules of containment define the Stateflow and Stateflow API object hierarchy.
For example, charts can contain states but states cannot contain charts. The
hierarchy of Stateflow objects, also known as the Stateflow data dictionary, is
depicted in the section “Stateflow Hierarchy of Objects” in the Stateflow and
Stateflow Coder User’s Guide documentation. The Stateflow API hierarchy is
very similar to the hierarchy of the Stateflow data dictionary and consists of
the following layers of containment:

• Root — The Root object (there is only one) serves as the parent of all
Stateflow API objects. It is a placeholder at the top of the Stateflow API
hierarchy to distinguish Stateflow tool objects from the objects of other tools
such as Simulink® and Handle Graphics®. The Root object is automatically
created when you load a model containing a Stateflow chart or call the
function sfnew to create a new model with a Stateflow chart.

1-5

1 Using the API

• Model — Objects of type Model are accessed through the Stateflow Root
object. Model objects are equivalent to Simulink models from a Stateflow
perspective. They can hold objects of type Chart, Data/Event, and Target.

• Chart — Within any Model object (model) there can be any number of
chart objects. Within each object of type Chart, there can be objects of type
State, Function, Box, Note, Data, Event, Transition, and Junction. These
objects represent the components of a Stateflow chart.

• State/Function/Box — Nested within objects of type State, Function,
and Box, there can be further objects of type State, Function, Box, Note,
Junction, Transition, Data, and Event. Levels of nesting can continue
indefinitely.

The preceding figure also shows two object types that exist outside the
Stateflow containment hierarchy, which are as follows:

• Editor — Though not a part of the Stateflow containment hierarchy, an
object of type Editor provides access to the purely graphical aspects of
objects of type Chart. For each Chart object there is an Editor object that
provides API access to the Chart object’s diagram editor.

• Clipboard — The Clipboard object has two methods, copy and pasteTo,
that use the clipboard as a convenient staging area to implement the
operation of copy and paste functionality in the Stateflow API.

Getting a Handle on Stateflow API Objects
You manipulate Stateflow objects by manipulating the Stateflow API objects
that represent them. You manipulate Stateflow API objects through a
MATLAB variable called a handle.

The first handle that you require in the Stateflow API is a handle to the Root
object, the parent object of all objects in the Stateflow API. In the following
command, the function sfroot returns a handle to the Root object:

rt = sfroot

Once you have a handle to the Root object, you can find a handle to the Model
object corresponding to the Simulink model you want to work with. Once you
have a handle to a Model object, you can find a handle to a Chart object for
the chart you want to edit. Later on, when you create objects or find existing

1-6

Overview of the Stateflow API

objects in a Stateflow chart, you receive a handle to the object that allows you
to manipulate the actual object in Stateflow.

You are introduced to obtaining handles to Stateflow API objects and using
them to create and alter Stateflow diagrams in “Quick Start for the Stateflow
API” on page 1-9.

Using API Object Properties and Methods
Once you obtain handles to Stateflow API objects, you can manipulate the
Stateflow objects that they represent through the properties and methods that
each Stateflow API object possesses. You access the properties and methods of
an object through a handle to the object.

API properties correspond to values that you normally set for an object
through the user interface of the Stateflow diagram editor. For example, you
can change the position of a transition by changing the Position property of
the Transition object that represents the transition. In the Stateflow diagram
editor you can click-drag the source, end, or midpoint of a transition to change
its position.

API methods are similar to functions for creating, finding, changing, or
deleting the objects they belong to. They provide services that are normally
provided by the Stateflow diagram editor. For example, you can delete a
transition in the Stateflow diagram editor by calling the delete method of
the Transition object that represents the transition. Deleting a transition in
the diagram editor is normally done by selecting a transition and pressing
the Delete key.

Stateflow API objects have some common properties and methods. For
example, all API objects have an Id and a Description property. All API
objects have a get and a set method for viewing or changing the properties of
an object, respectively. Most API objects also have a delete method. Methods
held in common among all Stateflow objects are listed in the reference section
“All Object Methods” on page 3-10.

Each API object also has properties and methods unique to its type. For
example, a State object has a Position property containing the spatial
coordinates for the state it represents in the chart editor. A Data object,
however, has no Position property.

1-7

1 Using the API

API References to Properties and Methods
When you need to know what property’s value to change or what method to
call to effect a change in a Stateflow chart, you can consult the following
references for specific information about an individual Stateflow API property
or method:

• API Properties and Methods by Use — This reference section lists the
properties and methods of the Stateflow API organized according to their
type of use in Stateflow.

For example, if you want to use the API to change the font color or style for
a state, see the section “Drawing Properties” on page 2-12.

• API Properties and Methods by Object — This reference section lists the
properties and methods of the Stateflow API by their owning objects.

For example, if you want to change a transition with a transition property
in the API, see the section “Transition Properties” on page 3-53.

• API Methods Reference — This reference section contains individual
references for each method in the Stateflow API.

These references are ordered alphabetically and provide information on
the objects that they belong to, the syntax for calling them, a description
of what they do, and information on their argument and return values,
along with examples.

1-8

Quick Start for the Stateflow API

Quick Start for the Stateflow API
This section helps you create a single Stateflow chart and its member objects
using the Stateflow API. It reflects the major steps in using the Stateflow API
to create a Stateflow chart:

1 “Create a New Model and Chart” on page 1-9 — Teaches you by example to
create a new empty Stateflow diagram in its own new model.

2 “Access the Model Object” on page 1-9 — Tells you how to access the
Stateflow Model object, which you need to access before you can access a
Stateflow Chart object.

3 “Access the Chart Object” on page 1-10 — Tells you how to access the
Chart object so that you can begin creating Stateflow objects in the chart
you created.

4 “Create New Objects in the Chart” on page 1-11 — Gives many example
commands for creating new objects in a new Stateflow chart.

Create a New Model and Chart
Create a new model by itself in MATLAB with the following steps:

1 Close down all models in Simulink.

2 Use the function sfnew to create a new chart.

The sfnew function creates a new untitled Simulink model with a new
Stateflow chart in it. Do not open the Stateflow chart.

You now have only one Simulink model in memory. You are now ready to
access the API Model object that represents the model itself.

Access the Model Object
In the Stateflow API, each model you create or load into memory is
represented by an object of type Model. Before accessing the Stateflow chart
you created in the previous section, you must first connect to its Model
object. However, in the Stateflow API, all Model objects are contained by the

1-9

1 Using the API

Stateflow API Root object, so you must use the Root object returned by the
function sfroot to access a Model object:

1 Use the following command to obtain a handle to the Root object:

rt = sfroot

2 Use the handle to the Root object, rt, to find the Model object representing
your new untitled Simulink model and assign it a handle, m in the
following command:

m = rt.find('-isa','Simulink.BlockDiagram')

If, instead of one model, there are several models open, this command returns
an array of different Model objects that you could access through indexing
(m(1),m(2),...). You can identify a specific Model object using the properties of
each model, particularly the Name property, which is the name of the model.
For example, you can use the Name property to find a Model object with the
name "myModel" with the following command:

m = rt.find('-isa', 'Simulink.BlockDiagram', '-and',
'Name','myModel')

However, since you now have only one model loaded, the object handle m in
the command for step 2 returns the Model object for the model that you just
created. You are now ready to use m to access the empty Stateflow chart so
that you can start filling it with Stateflow objects.

Access the Chart Object
In “Access the Model Object” on page 1-9, you accessed the Model object
containing your new chart to return a handle to the Model object for your new
model, m. Perform the following steps to access the new Stateflow chart:

1 Access the new Chart object and assign it to the workspace variable chart
as follows:

chart = m.find('-isa','Stateflow.Chart')

In the preceding command, the find method of the Model object m returns
an array of all charts belonging to that model. Because you created only one

1-10

Quick Start for the Stateflow API

chart, the result of this command is the chart you created. If you created
several charts, the find method returns an array of charts that you could
access through indexing (for example, chart(1), chart(2), and so on).

You can also use standard function notation instead of dot notation for the
preceding command. In this case, the first argument is the Model object
handle, m.

chart = find(m, '-isa','Chart')

2 Open the Stateflow chart with the following API command:

chart.view

The preceding command calls the view method of the Chart object whose
handle is chart. This displays the specified chart in the Stateflow diagram
editor. You should now have an empty Stateflow chart in front of you.
Other Stateflow API objects have view methods as well.

Create New Objects in the Chart
In the previous section, you created a handle to the new Chart object, chart.
Continue by creating new objects for your chart using the following steps:

1 Create a new state in the Chart object chart with the following command:

sA = Stateflow.State(chart)

This command is a Stateflow API constructor for a new state in which
Stateflow.State is the object type for a state, chart is a workspace
variable containing a handle to the parent chart of the new state, and sA is
a workspace variable to receive the returned handle to the new state.

An empty state now appears in the upper left-hand corner of the diagram
editor.

2 Use the chart.view command to bring the chart diagram editor to the
foreground for viewing.

3 Assign a name and position to the new state by assigning values to the new
State object’s properties as follows:

1-11

1 Using the API

sA.Name = 'A'
sA.Position = [50 50 310 200]

4 Create new states A1 and A2 inside state A and assign them properties
with the following commands:

sA1 = Stateflow.State(chart)
sA1.Name = 'A1'
sA1.Position = [80 120 90 60]
sA2 = Stateflow.State(chart)
sA2.Name = 'A2'
sA2.Position = [240 120 90 60]

These commands create and use the workspace variables sA, sA1, and sA2
as handles to the new states, which now have the following appearance:

5 Create a transition from the 3 o’clock position (right side) of state A1 to the
9 o’clock position (left side) of state A2 with the following commands:

tA1A2 = Stateflow.Transition(chart)
tA1A2.Source = sA1
tA1A2.Destination = sA2
tA1A2.SourceOClock = 3.
tA1A2.DestinationOClock = 9.

A transition now appears as shown:

1-12

Quick Start for the Stateflow API

6 Draw, name, and position a new state A11 inside A1 with the following
commands:

sA11 = Stateflow.State(chart)
sA11.Name = 'A11'
sA11.Position = [90 130 35 35]

7 Draw an inner transition from the 1 o’clock position of state A1 to the
1 o’clock position of state A11 with the following commands:

tA1A11 = Stateflow.Transition(chart)
tA1A11.Source = sA1
tA1A11.Destination = sA11
tA1A11.SourceOClock = 1.
tA1A11.DestinationOClock = 1.

Your Stateflow diagram now has the following appearance:

1-13

1 Using the API

8 Add the label E1 to the transition from state A1 to state A2 with the
following command:

tA1A2.LabelString = 'E1'

9 Add the label E2 to the transition from state A1 to state A11 with the
following command:

tA1A11.LabelString = 'E2'

The Stateflow diagram now has the following appearance:

Both the state and transition labels in our example are simple one-line
labels. To enter more complex multiline labels, see “Entering Multiline
Labels” on page 1-39. Labels for transitions also have a LabelPosition
property that you can use to move the labels to better locations.

1-14

Quick Start for the Stateflow API

10 Use the following commands to move the label for the transition from A1 to
A2 to the right by 15 pixels:

pos = tA1A2.LabelPosition
pos(1) = pos(1)+15
tA1A2.LabelPosition = pos

11 Use the following commands to finish your new chart diagram by adding
default transitions to states A and A1 with source points 20 pixels above
and 10 pixels to the left of the top midpoint of each state:

dtA = Stateflow.Transition(chart)
dtA.Destination = sA
dtA.DestinationOClock = 0
xsource = sA.Position(1)+sA.Position(3)/2-10
ysource = sA.Position(2)-20
dtA.SourceEndPoint = [xsource ysource]
dtA1 = Stateflow.Transition(chart)
dtA1.Destination = sA1
dtA1.DestinationOClock = 0
xsource = sA1.Position(1)+sA1.Position(3)/2-10
ysource = sA1.Position(2)-20
dtA1.SourceEndPoint = [xsource ysource]

You now have the following finished Stateflow diagram:

1-15

1 Using the API

12 Save the Simulink model with its new Stateflow chart to the working
directory as myModel.mdl with the following command:

sfsave(m.Id, 'myModel')

Notice that the preceding command uses the Id property of the Model
object m for saving the model under a new name.

You are now finished with “Quick Start for the Stateflow API” on page 1-9.
You can continue with “Accessing the Properties and Methods of Objects” on
page 1-17, or you can go to “Creating a MATLAB Script of API Commands”
on page 1-43 to see how to create a script of the API commands you used
in this Quick Start section.

1-16

Accessing the Properties and Methods of Objects

Accessing the Properties and Methods of Objects
All Stateflow API commands access the properties and methods of Stateflow
objects. Before you start creating a new Stateflow diagram or changing an
existing one, you must learn how to access the properties and methods of
objects.

This section describes the conventions used in naming the properties and
methods of Stateflow API objects and the rules for using them in commands:

• “Naming Conventions for Properties and Methods” on page 1-17 — Gives
you a look at the conventions followed in naming properties and methods.

• “Using Dot Notation with Properties and Methods” on page 1-17 — Shows
you how to use dot notation to access the value of an object’s property or
call the method of an object.

• “Using Function Notation with Methods” on page 1-18 — Shows you how to
use standard function notation to call the methods of objects.

Naming Conventions for Properties and Methods
By convention, all properties begin with a capital letter, for example, the
property Name. However, if a property consists of concatenated words, the
words following the first word are capitalized, for example, the property
LabelString. The same naming convention applies to methods, with the
exception that a method name must begin with a letter in lowercase; for
example, the method find.

Using Dot Notation with Properties and Methods
You can access the properties and methods of an object by adding a period
(.) and the name of the property or method to the end of an object’s handle
variable. For example, the following command returns the Type property for a
State object represented by the handle s:

stype = s.Type

The following command calls the dialog method of the State object s to open
a properties dialog for that state:

s.dialog

1-17

1 Using the API

Nesting Dot Notation
You can nest smaller dot expressions in larger dot expressions of properties.
For example, the Chart property of a State object returns the Chart object of
the containing chart. Therefore, the expression s.Chart.Name returns the
name of the chart containing the State whose object is s.

Methods can also be nested in dot expressions. For example, if the State object
sA1 represents state A1 in the final Stateflow chart at the end of “Create New
Objects in the Chart” on page 1-11, the following command returns the string
label for state A1’s inner transition to its state A11.

label = sA1.innerTransitionsOf.LabelString

The preceding command uses the LabelString property of a Transition object
and the innerTransitions method for a State object. It works as shown only
because state A1 has one inner transition. If state A1 has more than one
transition, you must first find all the inner transitions and then use an array
index to access each one, as shown below:

innerTransitions = sA1.innerTransitionsOf
label1 = innerTransitions(1).LabelString
label2 = innerTransitions(2).LabelString
and so on...

Using Function Notation with Methods
As an alternative to dot notation, you can access object methods with standard
function call notation. For example, you can use the get method to access the
Name property of a Chart object, ch, through one of the following commands:

name = ch.get('Name')
name = get(ch,'Name')

If you have array arguments to methods you call, use function notation. The
following example returns a vector of strings with the names of each chart in
the array of Chart objects chartArray:

names = get(chartArray, 'Name')

1-18

Accessing the Properties and Methods of Objects

If, instead, you attempt to use the get command with the following dot
notation, an error results:

names = chartArray.get('Name')

1-19

1 Using the API

Displaying Properties and Methods
The Stateflow API provides a few methods that help you see the properties
and methods available for each object. These are described in the following
sections:

• “Displaying Properties” on page 1-20 — Shows you how to display a list
of the properties for a given object.

• “Displaying the Names of Methods” on page 1-20 — Shows you how to
display a list of the methods for a given object.

• “Displaying Property Subproperties” on page 1-21 — Shows you how to
display the subproperties of some properties.

• “Displaying Enumerated Values for Properties” on page 1-22 — Shows
you how to display lists of acceptable values for properties that require
enumerated values.

Displaying Properties
To access the names of all properties for any particular object, use the get
method. For example, if the object s is a State object, enter the following
command to list the properties and current values for any State object:

get(s)

To get a quick description for each property, use the help method. For
example, if s is a State object, the following command returns a list of State
object properties, each with a small accompanying description:

s.help

Note Some properties do not have a description, because their names are
considered descriptive enough.

Displaying the Names of Methods
Use the methods method to list the methods for any object. For example, if
the object t is a handle to a Transition object, use the following command to
list the methods for any Transition object:

1-20

Displaying Properties and Methods

t.methods

Note The following internal methods might be displayed by the methods
method for an object, but is not applicable to Stateflow use, and is not
documented: areChildrenOrdered, getChildren, getDialogInterface,
getDialogSchema, getDisplayClass, getDisplayIcon, getDisplayLabel,
getFullName, getHierarchicalChildren, getPreferredProperties,
isHierarchical, isLibrary, isLinked, isMasked.

Use a combination of the get method and the classhandle method to list only
the names of the methods for an object. For example, list the names of the
methods for the Transition object t with the following command:

get(t.classhandle.Methods, 'Name')

Displaying Property Subproperties
Some properties are objects that have properties referred to as subproperties.
For example, when you invoke the command get(ch) on a chart object, ch,
the output displays the following for the StateFont property:

StateFont: [1x1 Font]

This value indicates that the StateFont property of a state has
subproperties. To view the subproperties of StateFont, enter the command
get(ch.StateFont.get) to receive something like the following:

Name: Helvetica'
Size: 12
Weight: 'NORMAL'
Angle: 'NORMAL'

From this list it is clearly seen that Name, Size, Weight, and Angle are
subproperties of the property StateFont. In the API property references for
this guide (see “API References to Properties and Methods” on page 1-8), these
properties are listed by their full names: Statefont.Name, Statefont.Size,
and so on.

1-21

1 Using the API

Displaying Enumerated Values for Properties
Many of the properties for API objects can only be set to one of a group of
enumerated strings. You can identify these properties from the API references
for properties and methods (see “API References to Properties and Methods”
on page 1-8). Generally, in the display for properties generated by the get
command (see “Displaying Properties” on page 1-20) the values for these
properties appear as strings of capital letters.

You display a list of acceptable strings for a property requiring enumerated
values using the set method. For example, if ch is a handle to a Chart object,
you can display the allowed enumerated values for the Decomposition
property of that chart with the following command:

set (ch,'Decomposition')

1-22

Creating and Destroying API Objects

Creating and Destroying API Objects
You create (construct), parent (contain), and delete (destroy) objects in
Stateflow through constructor methods in the Stateflow API. For all but
the Editor and Clipboard objects, creating objects establishes a handle to
them that you can use for accessing their properties and methods to make
modifications to Stateflow diagrams. See the following sections:

• “Creating Stateflow Objects” on page 1-23 — Shows you how to create and
connect to Stateflow objects in the Stateflow API.

• “Establishing an Object’s Parent (Container)” on page 1-25 — Shows
you how to control the containment of graphical objects in the Stateflow
diagram editor.

Stateflow objects are contained (parented) by other objects as defined in
the Stateflow hierarchy of objects (see “Stateflow API Object Hierarchy” on
page 1-4). You control containment of nongraphical objects in the Stateflow
Explorer.

• “Destroying Stateflow Objects” on page 1-26 — Shows you how to delete
objects in the Stateflow API.

Creating Stateflow Objects
You create a Stateflow object as the child of a parent object through API
constructor methods. Each Stateflow object type has its own constructor
method. See “Constructor Methods” on page 3-6 for a list of the valid
constructor methods.

Use the following process to create Stateflow objects with the Stateflow API:

1 Access the parent object to obtain a handle to it.

When you first begin populating a model or chart, this means that you
must get a handle to the Stateflow Model object or a particular Chart
object. See “Access the Model Object” on page 1-9 and “Access the Chart
Object” on page 1-10.

See also “Accessing Existing Stateflow Objects” on page 1-27 for a more
general means of accessing (getting an object handle to) an existing
Stateflow object.

1-23

1 Using the API

2 Call the appropriate constructor method for the creation of the object using
the parent (containing) object as an argument.

For example, the following command creates and returns a handle s to a
new state object in the chart object with the handle ch:

s = Stateflow.State(ch)

By default, the newly created state from the preceding command appears
in the upper-left corner of the Stateflow chart (at x-y coordinates 0,0).

The constructor returns a handle to an API object for the newly created
Stateflow object. Use this handle to display or change the object through
its properties and methods.

3 Use the object handle returned by the constructor to make changes to the
object in Stateflow.

For example, you can now use the handle s to set its name (Name property)
and position (Position property). You can also connect it to other states
or junctions by creating a Transition object and setting its Source or

1-24

Creating and Destroying API Objects

Destination property to s. See “Create New Objects in the Chart” on
page 1-11 for examples.

Use the preceding process to create all Stateflow objects in your chart. “Create
New Objects in the Chart” on page 1-11 gives examples for creating states and
transitions. Objects of other types are created just as easily. For example, the
following command creates and returns a handle (d1) for a new Data object
belonging to the state A (handle sA):

d1 = Stateflow.Data(sA)

Note Currently, there is no constructor for a Stateflow chart. To create a
chart with the Stateflow API you must use the sfnew function.

Establishing an Object’s Parent (Container)
As discussed in the previous section, “Creating Stateflow Objects” on page
1-23, the Stateflow API constructor establishes the parent for a newly
created object by taking a handle for the parent object as an argument to
the constructor.

Graphical Object Parentage
When graphical objects (states, boxes, notes, functions, transitions, junctions)
are created, they appear completely inside their containing parent object.
In the diagram editor, graphical containment is a necessary and sufficient
condition for establishing the containing parent.

Repositioning a graphical object through its Position property can change an
object’s parent or cause an undefined parent error condition. Parsing a chart
in which the edges of one object overlap with another produces an undefined
parent error condition that cannot be resolved by the Stateflow parser. You
can check for this condition by examining the value of the BadIntersection
property of a Chart object, which equals 1 if the edges of a graphical object
overlap with other objects. You need to set the size and position of objects so
that they are clearly positioned and separate from other objects.

1-25

1 Using the API

Nongraphical Object Parentage
When nongraphical objects (data, events, and targets) are created, they appear
in the Stateflow Explorer at the hierarchical level of their owning object.
Containment for nongraphical objects is established through the Stateflow
Explorer only. See the section “Using the Model Explorer with Stateflow
Objects” in the Stateflow and Stateflow Coder User’s Guide documentation.

Destroying Stateflow Objects
Each Stateflow object of type State, Box, Function, Note, Transition, Junction,
Event, Data, or Target has a destructor method named delete. In the
following example, a State object, s, is deleted:

s.delete

The preceding command is equivalent to performing a mouse select and
keyboard delete operation in the Stateflow diagram editor. Upon deletion,
graphical Stateflow objects are sent to the clipboard; nongraphical objects,
such as data and events, are completely deleted. The workspace variable s
still exists but is no longer a handle to the deleted state.

1-26

Accessing Existing Stateflow Objects

Accessing Existing Stateflow Objects
Creating Stateflow objects through the Stateflow API gives you an immediate
handle to the newly created objects (see “Creating Stateflow Objects” on page
1-23). You can also connect to Stateflow objects that already exist for which
you have no current API handle.

The following sections describe how you use the Stateflow API to find and
access existing objects in Stateflow charts:

• “Finding Objects” on page 1-27 — Shows you how to use the find method,
which is the most powerful and versatile method for locating objects in
the Stateflow API.

• “Finding Objects at Different Levels of Containment” on page 1-28 —
Shows you how to use the find method for finding objects at different
levels of containment.

• “Retrieving Recently Selected Objects” on page 1-30 — Shows you how to
use the sfco function to retrieve handles to the most recently selected
objects in a Stateflow chart.

• “Getting and Setting the Properties of Objects” on page 1-31 — Shows
you how to use the Stateflow API to access the properties of the existing
objects you find in Stateflow charts.

Finding Objects
There are several object methods that you use to traverse the Stateflow
hierarchy to locate existing objects. Chief among these is the versatile find
method.

With the find method, you specify what to search for by specifying
combinations of the following types of information:

• The type of object to find

• A property name for the object to find and its value

The following example searches through Model object m to return every State
object with the name 'On'.

1-27

1 Using the API

onState = m.find('-isa','Stateflow.State','-and','Name','On')

If a find command finds more than one object that meets its specifications,
it returns an array of qualifying objects. The following example returns an
array of all charts in your model:

chartArray = m.find('-isa','Stateflow.Chart')

Use array indexing to access individual properties and methods for a chart.
For example, if the preceding command returns three Stateflow charts, the
following command returns the Name property of the second chart found:

name2 = chartArray(2).Name

By default, the find command finds objects at all depths of containment
within an object. This includes the zeroth level of containment, which is the
searched object itself. For example, if state A, which is represented by State
object sA, contains two states, A1 and A2, and you specify a find command
that finds all the states in A as follows,

states= sA.find('-isa','Stateflow.State')

The preceding command finds three states: A, A1, and A2.

Note Be careful when specifying the objects you want to find with the find
method for a Root or Model object. Using the find method for these objects can
return Simulink objects matching the arguments you specify. For example, if
rt is a handle to the Root object, the command find('Name', 'ABC') might
return a Simulink subsystem or block named ABC. See the reference for the
find method for a full description of the method and its parameters.

Finding Objects at Different Levels of Containment
Once you find a particular object in a Stateflow diagram by its name or
another property, you might want to find the objects that it contains (children),
or the object that contains it (parent). To find child objects, use the find
method. To find a parent object, use the method up.

1-28

Accessing Existing Stateflow Objects

Finding Child Objects
The find method finds objects at the depth of containment within an object
that you specify. If you want to limit the containment search depth with the
find command, use the depth switch. For example, to find all the objects in
State object sA at the first level of containment, use the following command:

objArray = sA.find('-depth', 1)

Don’t forget, however, that the find command always includes the zeroth
level of containment, which is the object itself. So, the preceding command
also includes state A in the list of objects found. However, you can exclude
state A from the vector of objects in objArray with the MATLAB function
setdiff as follows:

objArray = setdiff(objArray, sA)

The following command returns a collection of all junctions at the first level of
containment inside the state A that is represented by State object sA:

juncArray = sA.find('-isa','Stateflow.Junction','-depth',1)

The following command returns an array of all transitions inside state A
at all levels of containment:

transArray = sA.find('-isa','Stateflow.Transition')

Finding a Parent Object
The up method finds the parent container object of any given object. In the
example Stateflow diagram in “Create New Objects in the Chart” on page
1-11, state A contains states A1 and A2. Also, state A1 contains state A11. In
the example, sA11 is a handle to the state A11. This means that

>> pA11 = sA11.up;
>> pA11.Name

ans =

A1

1-29

1 Using the API

returns a handle pA11 to the state A1, the parent of state A11, and

>> ppA11 = pA11.up;
>> ppA11.Name

ans =

A

returns a handle ppA11 to the state A, the parent of state A1.

Retrieving Recently Selected Objects
You can retrieve the most recently selected objects in a Stateflow diagram by
using the sfgco function. This function returns object handles or a vector of
handles depending on the following conditions:

If Then sfgco returns

There are no open diagrams An empty matrix

There is no selection list Handle of the diagram most recently
clicked

You select one object in a diagram Handle to the selected object

You select multiple objects in a
diagram

Vector of handles for the selected
objects

You select objects in multiple
diagrams

Handles of the most recently selected
objects in the most recently selected
diagram

For example, suppose you run the sf_boiler demo and open the Stateflow
chart called Bang Bang Controller. If you select the Off state in the chart,
sfgco returns

ans =

Path: [1x37 char]
Id: 31

Machine: [1x1 Stateflow.Machine]

1-30

Accessing Existing Stateflow Objects

Name: 'Off'
Description: ''
LabelString: [1x56 char]

FontSize: 12
ArrowSize: 8
TestPoint: 0

Chart: [1x1 Stateflow.Chart]
BadIntersection: 0

Subviewer: [1x1 Stateflow.Chart]
Document: ''

Tag: []
RequirementInfo: ''
ExecutionOrder: 0
HasOutputData: 0

Position: [31.7440 40.9730 214.1620 59.5660]
Decomposition: 'EXCLUSIVE_OR'

Type: 'OR'
IsSubchart: 0
IsGrouped: 0

Debug: [1x1 Stateflow.StateDebug]

If you then hold down the Shift key to select the three transitions in state
Off, sfgco returns

ans =

Stateflow.Transition: 3-by-1

Getting and Setting the Properties of Objects
Once you obtain a particular object, you can access its properties directly or
through the get method. For example, you obtain the description for a State
object s with one of the following commands:

• od = s.Description

• od = s.get ('Description')

• od = get (s, 'Description')

1-31

1 Using the API

You change the properties of an object directly or through the set method.
For example, you change the description of the State object s with one of the
following commands:

• s.Description = 'This is the On state.'

• s.set ('Description', 'This is the On state.')

• set (s, 'Description', 'This is the On state.')

1-32

Copying Objects

Copying Objects
You can use the clipboard (accessed through the Stateflow API Clipboard
object) to copy one object to another. See the following topics to learn how
to copy objects from one object to another using the Clipboard object and
its methods:

• “Accessing the Clipboard Object” on page 1-33 — Shows you how to use the
Clipboard object and its two methods, copy and pasteTo, to copy objects
from one object to another.

• “copy Method Limitations” on page 1-33 — Describes the features and
limitations of the copy method that determine how you can copy objects
in the Stateflow API.

• “Copying by Grouping (Recommended)” on page 1-34 — Gives you the most
powerful method for copying using the IsGrouped property of State objects.

• “Copying Objects Individually” on page 1-35 — Tells you how you can also
copy objects individually from one object to another.

Accessing the Clipboard Object
The Clipboard object (there is only one) provides an interface to the clipboard
used in copying Stateflow objects. You cannot directly create or destroy the
Clipboard object as you do other Stateflow API objects. However, you can
attach a handle to it to use its properties and methods to copy Stateflow
objects.

You create a handle to the Clipboard object by using the sfclipboard function
as follows:

cb = sfclipboard

Clipboard objects have two methods, copy and pasteTo, that together provide
the functionality to copy objects from one object to another. The copy method
copies the specified objects to the Clipboard object, and the pasteTo method
pastes the contents of the clipboard to a new container.

copy Method Limitations
The copy method is subject to the following limitations for all objects:

1-33

1 Using the API

• The objects copied must be either all graphical (states, boxes, functions,
transitions, junctions) or all nongraphical (data, events, targets).

You cannot copy a mixture of graphical and nongraphical objects to the
clipboard in the same copy operation.

• To maintain the transition connections and containment relationships
between copied objects, you must copy the entire array of related objects.

All related objects must be part of the array of objects copied to the
clipboard. For example, if you attempt to copy two states connected by a
transition to another container, you can only accomplish this by copying
both the states and the transition at the same time. That is, you must do a
single copy of a single array containing both the states and the transition
that connects them.

If you copy a grouped state to the clipboard, not only are all the objects
contained in the state copied, but all the relations among the objects in
the grouped state are copied as well. Thus, copying by grouping is a
recommended procedure. See “Copying by Grouping (Recommended)” on
page 1-34.

Copying Graphical Objects
The copy method is subject to the following limitations for all graphical
objects:

• Copying graphical objects also copies the Data, Event, and Target objects
that the graphical objects contain.

• If all copied objects are graphical, they must all be seen in the same
subviewer.

This means that all graphical objects copied in a single copy command must
reside in the same chart or subchart.

Copying by Grouping (Recommended)
Copying a grouped state in Stateflow copies not only the state but all of its
contents. By grouping a state before you copy it, you can copy it and all of its
contained objects at all levels of containment with the Stateflow API. This is
the simplest way of copying objects and should be used whenever possible.

1-34

Copying Objects

You use the Boolean IsGrouped property for a state to group that state. If you
set the IsGrouped property for a state to a value of true (=1), it is grouped. If
you set IsGrouped to a value of false (=0), the state is not grouped.

The following example procedure copies state A to the chart X through
grouping. In this example, assume that you already have a handle to state A
and chart X through the MATLAB variables sA and chX, respectively:

1 If the state to copy is not already grouped, group it along with all its
contents by setting the IsGrouped property for that state to true (=1).

prevGrouping = sA.IsGrouped
if (prevGrouping == 0)
sA.IsGrouped = 1

end

2 Get a handle to the Clipboard object.

cb = sfclipboard

3 Copy the grouped state to the clipboard using the Clipboard object.

cb.copy(sA)

4 Paste the grouped object to its new container.

cb.pasteTo(chX)

5 Set the copied state and its source state to its previous IsGrouped property
value.

sA.IsGrouped = prevGrouping
sNew = chX.find('-isa',Stateflow.State','-and','Name',sA.Name)
sNew.IsGrouped = prevGrouping

Copying Objects Individually
You can copy specific objects from one object to another. However, in order to
preserve transition connections and containment relations between objects,
you must copy all the connected objects at once. To accomplish this, use the
general technique of appending objects from successive finds in MATLAB

1-35

1 Using the API

to a growing array of objects before copying the finished object array to the
clipboard.

Using the example of the Stateflow chart at the end of “Create New Objects
in the Chart” on page 1-11, you can copy states A1, A2, and the transition
connecting them to another state, B, with the following API commands,
where, sA and sB are workspace handles to states A and B, respectively.

objArrayS = sA.find('-isa','Stateflow.State','-depth',1)
objArrayT = sA.find('-isa','Stateflow.Transition','-depth',1)
sourceObjs = {objArrayS ; objArrayT}
cb = sfclipboard
cb.copy(sourceObjs)
destObjs = cb.pasteTo(sB)

You can also accomplish the job of constructing the copy array through
a complex find command. This might be adequate in certain situations.
However, this approach might require you to formulate a very complex
command. By contrast, the technique of appending found objects to an array
relies on simpler find commands.

You can also copy nongraphical data, events, and target objects individually.
However, since there is no way for these objects to find their new owners, you
must ensure that each of these objects is separately copied to its appropriate
owner object.

Note Copying objects individually is more difficult than copying grouped
objects. This is why copying objects by grouping is recommended. See
“Copying by Grouping (Recommended)” on page 1-34.

1-36

Using the Editor Object

Using the Editor Object
The Editor object provides access to the purely graphical properties and
methods of Chart objects. Each Chart object has its own Editor object. See
the following topics to learn how to use the Editor object and its methods to
change the display of the Stateflow diagram editor for a chart:

• “Accessing the Editor Object” on page 1-37 — Tells you how to connect
to the Editor object.

• “Changing the Stateflow Display” on page 1-37 — Teaches you how to use
the methods of the Editor object to change the display of the Stateflow
diagram editor.

Accessing the Editor Object
You cannot directly create or destroy the Editor and Clipboard objects as you
do other Stateflow API objects. However, you can attach a handle to them to
use their properties and methods for modifications to Stateflow diagrams.

When you create a chart, an Editor object is automatically created for it. If ch
is a workspace handle to a chart, you create a handle to the Editor object for
that chart with the following command:

ed = ch.Editor

Changing the Stateflow Display
Use the handle ed from the preceding example to access the Editor object
properties and methods. For example, the following command calls the
zoomIn method to zoom in the chart by a factor of 20%:

ed.zoomIn

Or, you can simply set the ZoomFactor property of this chart’s editor to an
absolute zoom factor of 150%:

ed.ZoomFactor = 1.5

1-37

1 Using the API

You can also use a chart’s Editor object to change the window position of
the diagram editor. For a reference to all the Editor object’s properties and
methods, see “Editor Properties” on page 3-7 and “Editor Methods” on page
3-8.

1-38

Entering Multiline Labels

Entering Multiline Labels
In the examples shown thus far of entering labels for states and transitions,
only a simple one-line expression has been used. The following figure shows
state A with a multiline label.

There are two ways to enter multiline labels for both states and transitions.
In the following examples, sA is a workspace variable handle to the State
object in the Stateflow API for state A:

• Use the MATLAB function sprintf:

str = sprintf('A\nen: entrA()\ndu: duriA()\nex: exitA()')
sA.LabelString = str

In this example, carriage returns are inserted into a string expression
with the escape sequence \n.

• Use a concatenated string expression:

str = ['A',10,'entr: entrA()',10,'du: duriA()',
10,'ex: exitA()']

sA.LabelString = str

In this example, carriage returns are inserted into a concatenated string
expression with the ASCII equivalent of a carriage return, the integer 10.

1-39

1 Using the API

Creating Default Transitions
Default transitions differ from normal transitions in not having a source
object. You can create a default transition with the following process:

1 Create a transition.

2 Attach the destination end of the transition to an object.

3 Position the source endpoint for the transition.

If you assume that the workspace variable sA is a handle to state A, the
following commands create a default transition and position its source 25
pixels above and 15 pixels to the left of the top midpoint of state A:

dt = Stateflow.Transition(sA)
dt.Destination = sA
dt.DestinationOClock = 0
xsource = sA.Position(1)+sA.Position(3)/2-15
ysource = sA.Position(2)-25
dt.SourceEndPoint = [xsource ysource]

The created default transition has the following appearance:

This method is also used for adding the default transitions toward the end
of the example Stateflow diagram constructed in “Create New Objects in the
Chart” on page 1-11.

1-40

Making Supertransitions

Making Supertransitions
The Stateflow API does not currently support the direct creation of
supertransitions. Supertransitions are transitions between a state or
junction in a top-level chart and a state or junction in one of its subcharts, or
between states residing in different subcharts at the same or different levels
in a diagram. For a better understanding of supertransitions, see “What
Is a Supertransition?” in the Stateflow and Stateflow Coder User’s Guide
documentation.

Stateflow does provide a workaround for indirectly creating supertransitions.
In the following example, a supertransition is desired from a junction inside
a subchart to a junction outside the subchart. In order to use the Stateflow
API to create the supertransition in this example, first use the API to create
the superstate as an ordinary state with a transition between its contained
junction and a junction outside it.

Now set the IsSubchart property of the state A to true (=1).

This makes state A a subchart, and the transition between the junctions is
now a supertransition.

1-41

1 Using the API

You can also connect supertransitions to and from objects in an existing
subchart (state A, for example) with the following procedure:

1 Save the original position of subchart A to a temporary workspace variable.

For example, if the subchart A has the API handle sA, store its position
with the following command:

sA_pos = sA.Position

2 Convert subchart A to a state by setting its IsSubchart property to false
(=0).

sA.IsSubchart = 0

3 Ungroup state A by setting its IsGrouped property to false (=0).

sA.IsGrouped = 0

When convert a subchart a normal state, it stays grouped to hide the
contents of the subchart. When you ungroup the subchart, it might resize
to display its contents.

4 Make the necessary transition connections.

See “Create New Objects in the Chart” on page 1-11 for an example of
creating a transition.

5 Set the IsSubchart property of state A back to true (=1).

For example, sA.IsSubchart = 1

6 Assign subchart A its original position.

sA.Position = sA_pos

When you convert a subchart to a normal state and ungroup it, it might
resize to accommodate the size of its contents. The first step of this
procedure stores the original position of the subchart so that this can be
restored after the transition connection is made.

1-42

Creating a MATLAB Script of API Commands

Creating a MATLAB Script of API Commands
In “Quick Start for the Stateflow API” on page 1-9, you created and saved a
new model through a series of Stateflow API commands. You can include the
same API commands in the following MATLAB script. This script allows you
to quickly recreate the same model with the single command makeMyModel.

function makeMyModel
% Get all previous models loaded

rt = sfroot;
prev_models = rt.find('-isa','Simulink.BlockDiagram');

% Create new model, and get current models

sfnew;
curr_models = rt.find('-isa','Simulink.BlockDiagram');

% New model is current models - previous models

m = setdiff(curr_models, prev_models);

% Get chart in new model

chart = m.find('-isa', 'Stateflow.Chart');

% Create state A in chart

sA = Stateflow.State(chart);
sA.Name = 'A';
sA.Position = [45 45 300 150];

% Create state A1 inside of state A

sA1 = Stateflow.State(chart);
sA1.Name = 'A1';
sA1.Position = [80 80 90 80];

% Create state A2 inside of state A

1-43

1 Using the API

sA2 = Stateflow.State(chart);
sA2.Name = 'A2';
sA2.Position = [220 80 90 80];

% Create a transition from A1 to A2

tA1A2 = Stateflow.Transition(chart);
tA1A2.Source = sA1;
tA1A2.Destination = sA2;
tA1A2.SourceOClock = 3.;
tA1A2.DestinationOClock = 9.;

% Create state A11 inside of state A1

sA11 = Stateflow.State(chart);
sA11.Name = 'A11';
sA11.Position = [110 110 35 35];

% Create a transition from A1 to A11

tA1A11 = Stateflow.Transition(chart);
tA1A11.Source = sA1;
tA1A11.Destination = sA11;
tA1A11.SourceOClock = 1.;
tA1A11.DestinationOClock = 1.;

% Label transitions A1-A11 and A1-A2
% to listen for events E1 and E2

tA1A2.LabelString = 'E1';
tA1A11.LabelString = 'E2';

% Create the Events E1 and E2

E1 = Stateflow.Event(chart);
E1.Name = 'E1';

% Move label for transition A1-A1 to the right a bit

pos = tA1A2.LabelPosition;

1-44

Creating a MATLAB Script of API Commands

pos(1) = pos(1)+15;
tA1A2.LabelPosition = pos;

% Create a default transition to state A

dtA = Stateflow.Transition(chart);
dtA.Destination = sA;
dtA.DestinationOClock = 0;
xsource = sA.Position(1)+sA.Position(3)/2-10;
ysource = sA.Position(2)-20;
dtA.SourceEndPoint = [xsource ysource];

% Create a default transition to state A1

dtA1 = Stateflow.Transition(chart);
dtA1.Destination = sA1;
dtA1.DestinationOClock = 0;
xsource = sA1.Position(1)+sA1.Position(3)/2-10;
ysource = sA1.Position(2)-20;
dtA1.SourceEndPoint = [xsource ysource];

1-45

1 Using the API

1-46

2

API Properties and Methods
by Use

This reference section lists and categorizes the properties and methods of
the Stateflow Application Programming Interface (API) by different types of
use in Stateflow.

Reference Table Column
Descriptions (p. 2-3)

Identifies the columns of the tables,
in the sections that follow, that list
and describe the properties and
methods of the Stateflow API

Access Methods (p. 2-4) Methods for finding and getting
objects, and setting properties.

Code Generation and Target
Building (p. 2-5)

Properties and methods that control
the generated code for a Stateflow
chart. These include

Display Control (p. 2-10) The following properties and
methods control the display of a
diagram or dialog.

Graphical Appearance (p. 2-11) Properties and methods that control
the graphical appearance of a
Stateflow object in its Stateflow
diagram. These include

Creating and Deleting Objects
(p. 2-20)

Methods that create new Stateflow
objects

Containment (p. 2-21) Properties that control how one
Stateflow object contains another
Stateflow object.

2 API Properties and Methods by Use

Data Definition Properties (p. 2-22) Properties that control the type and
size of data.

Debugging Properties (p. 2-25) Properties that control debugging
during simulation.

Identifiers (p. 2-28) Properties that identify and describe
an object.

Interface to Simulink (p. 2-30) Properties that determine how a
Stateflow block interfaces with its
Simulink model.

Machine (Model) Identifier
Properties (p. 2-34)

Properties that identify parts of a
Simulink.

Truth Table Construction Properties
(p. 2-35)

Properties relevant only to truth
tables.

2-2

Reference Table Column Descriptions

Reference Table Column Descriptions
Reference tables for Stateflow API properties and methods have the following
columns:

• Name — The name for the property or method. Each property or method
has a name that you use in dot notation along with a Stateflow object to set
or obtain the property’s value or call the method.

• Type — A data type for the property. Some types are other Stateflow API
objects, such as the Machine property, which is the Machine object that
contains this object.

• Access — An access type for the property. Properties that are listed as
RW (read/write) can be read and changed. For example, the Name and
Description properties of particular objects are RW. However, some
properties are RO (read-only) because they are set by MATLAB itself.

• Description — A description for the property or method. For some
properties, the equivalent GUI operations for setting it in Stateflow are
also given.

• Objects — The types of objects that have this property or method. The
object types are listed by a single letter corresponding to the beginning
character of each object type (except for the Target object), which are as
follows: Root (R), Machine (M), Chart (C), State (S), Box (B), Function (F),
Truth Table (TT), Note (N), Transition (T), Junction (J), Event (E), Data
(D), Target (X), Editor (ED), and Clipboard (CB).

2-3

2 API Properties and Methods by Use

Access Methods
The following methods find, get, and set objects and their properties.

Method Description Objects

defaultTransitions Return the default transitions in this chart at the
top level of containment.

C S B F

find Return objects of this object that meet the criteria
specified by the arguments.

All

get Display the property settings of this object. All

help Display a list of properties for this object with
short descriptions. Used with all objects except
the Root and Machine object.

All

innerTransitions Return the inner transitions that originate with
this object and terminate on a contained object.

S B

methods Return the methods of this object. All

outerTransitions Return an array of transitions that exit the outer
edge of this object and terminate on an object
outside the containment of this object.

S B

set Set the specified property of this object with a
specified value. Used with all objects except the
Root object.

All

sourcedTransitions Return all inner and outer transitions whose
source is this object.

S B F J

struct Return a MATLAB structure containing the
property settings of this object.

C S B F N T J
D E X

2-4

Code Generation and Target Building

Code Generation and Target Building
This section lists and describes properties and methods that control parsing,
code generation, and building of an simulation application in the following
topics:

• “Code Generation and Build Methods” on page 2-5

• “Code Generation Properties” on page 2-6

• “Custom Code Properties” on page 2-8

Code Generation and Build Methods
The following methods control parsing, code generation, and building of an
simulation application.

Method Description Objects

build Build this target only for those portions of the target’s
charts that have changed since the last build (i.e.,
incrementally).

See also the methods rebuildAll, generate,
rebuildAll, and make.

X

generate Generate code for this target only for those portions of
this target’s charts that have changed since the last
code generation (i.e., incrementally).

See also the methods build, rebuildAll,
regenerateAll, and make.

X

getCodeFlag Return the value of the specified code flag for this
target.

X

make Compile this target for only those portions of this
target’s charts that have changed since the last compile
(i.e., incrementally). For a simulation target (sfun), a
dynamic link library (sfun.dll) is compiled from the
generated code.

See also the methods build, rebuildAll, generate,
and regenerateAll.

X

2-5

2 API Properties and Methods by Use

Method Description Objects

parse Parses all the charts in this machine (model) or just
this chart.

M C

rebuildAll Completely rebuild this target.

See also the methods build, generate, regenerateAll,
and make.

X

regenerateAll Completely regenerate code for this target.

See also the methods build, rebuildAll, generate,
and make.

X

setCodeFlag Set the value of the specified code flag for this target. X

Code Generation Properties
The following properties control the code generated from the Stateflow charts
in a model.

Property Return Access Description Objects

ApplyToAllLibs Boolean RW If set to true, use settings in this target
for all libraries. Equivalent to selecting
the Use settings for all libraries
check box in this target’s Target Builder
dialog.

X

2-6

Code Generation and Target Building

Property Return Access Description Objects

CodeFlagsInfo Array RO A MATLAB vector of structures
containing information on code flag
settings for this target. Each element in
the vector is a MATLAB structure with
information about a particular code flag.
Each flag corresponds to a selection
in the Coder Options dialog for this
target. If you want to see information
about the first flag for a Target object t,
use the following commands:

cfi = t.CodeFlagsInfo
disp(cfi(1))

If you want to quickly see the names of
all the flags, do the following:

cfi.name

The Name member of the CodeFlagsInfo
structure is shorthand for a longer
expression in the Coder Options
dialog. For example, the name
'comments' actually refers to the dialog
setting Comments in generated
code.

You use the name of a code flag
to get and set the code flag value
with the methods getCodeFlag and
setCodeFlag. Changing the vector
returned by CodeFlagsInfo does not
change an actual flag.

X

EnableBitOps Boolean RW If set to true, enable C-like bit
operations in generated code for this
chart. Equivalent to selecting the
Enable C-like bit operations check
box in the chart properties dialog.

C

2-7

2 API Properties and Methods by Use

Custom Code Properties
The following properties control the custom code that you include with the
Stateflow model.

Property Return Access Description Objects

CodegenDirectory String RW Directory to receive generated code.
Applies only to targets other than
sfun and rtw targets.

X

CustomCode String RW Custom code included at the top
of the generated code. Equivalent
to the entry for the Custom code
included at the top of generated
code selection of the Target
Options dialog for this target.

X

CustomInitializer String RW Custom initialization code.
Equivalent to the entry for the
Custom initialization code
(called from mdlInitialize)
selection of the Target Options
dialog for this target. Applies only
to sfun and rtw targets.

X

CustomTerminator String RW Custom termination code.
Equivalent to the entry for the
Custom termination code
(called from mdlTerminate)
selection of the Target Options
dialog for this target. Applies only
to sfun and rtw targets.

X

UserIncludeDirs Boolean RW Custom include directory paths.
Equivalent to the entry for the
Custom include directory paths
selection of the Target Options
dialog for this target.

X

2-8

Code Generation and Target Building

Property Return Access Description Objects

UserLibraries String RW Custom libraries. Equivalent to the
entry for the Custom libraries
selection of the Target Options
dialog for this target.

X

UserSources String RW Custom source files. Equivalent
to the entry for the Custom
source files selection of the Target
Options dialog for this target.

X

ReservedNames String RW Comma- or space-separated list
of names to not use in Stateflow
generated code. Equivalent to the
entry in the Reserved Names
panel of the Target Options dialog.

X

2-9

2 API Properties and Methods by Use

Display Control
Lists properties and methods that control the current display in the following
topics:

• “Display Methods” on page 2-10

• “Display Properties” on page 2-10

Display Methods
The following methods control the current display.

Method Description Objects

dialog Display the Properties dialog of this object. M C S B F N T
J D E X

view Display this object in a Stateflow diagram editor. C S B F N T J D
E X

zoomIn and zoomOut Causes the Stateflow chart editor to zoom in or
zoom out on this chart.

ED

Display Properties
The following properties affect the display of the current Stateflow diagram.

Property Return Access Description Objects

Visible Boolean RO If true, indicates that this object is
currently displayed in a Stateflow
diagram editor window.

C

Subviewer Chart or State RO State or chart in which this object can
be graphically viewed.

S B F N
T J TT

ZoomFactor Double RW View magnification level (zoom factor)
of this chart in the chart diagram
editor.

ED

2-10

Graphical Appearance

Graphical Appearance
The following properties and methods control the graphical appearance of
objects in Stateflow diagrams in the following topics:

• “Color Properties” on page 2-11

• “Drawing Properties” on page 2-12

• “Font Properties” on page 2-13

• “Position Properties” on page 2-16

• “Text Properties” on page 2-19

Color Properties
The following properties set colors for the graphical objects in Stateflow charts.

Property Return Access Description Objects

ChartColor [R,G,B] RW Background color of this chart in a 1-by-3
RGB array with each value normalized on
a scale of 0 to 1.

C

ErrorColor [R,G,B] RW Set the RGB color for errors in the
Stateflow Diagram Editor in a 1-by-3 RGB
array with each value normalized on a
scale of 0 to 1. Equivalent to changing
Error color in the Colors & Fonts dialog
under Edit > Style.

C

JunctionColor [R,G,B] RW Set the RGB color for junctions in the
Stateflow Diagram Editor in a 1-by-3 RGB
array with each value normalized on a
scale of 0 to 1. Equivalent to changing the
Junction color in the Colors & Fonts
dialog under Edit > Style.

C

2-11

2 API Properties and Methods by Use

Property Return Access Description Objects

SelectionColor [R,G,B] RW Color of selected items for this chart
in a 1-by-3 RGB array with each value
normalized on a scale of 0 to 1. Equivalent
to changing the Selection color in the
Colors & Fonts dialog under Edit >
Style.

C

StateColor [R,G,B] RW Color of the state box in a 1-by-3 RGB
array with each value normalized on a
scale of 0 to 1. Equivalent to changing
the State/Frame color in the Colors &
Fonts dialog under Edit > Style.

C

StateLabelColor [R,G,B] RW Color of the state labels for this chart
in 1-by-3 RGB array with each value
normalized on a scale of 0 to 1. Equivalent
to changing the label color of StateLabel
in the Colors & Fonts dialog under
Edit > Style.

C

TransitionColor [R,G,B] RW Set the RGB color for transitions in the
Stateflow Diagram Editor in a 1-by-3 RGB
array with each value normalized on a
scale of 0 to 1. Equivalent to changing the
Transition color in the Colors & Fonts
dialog under Edit > Style.

C

Transition

LabelColor

[R,G,B] RW Color of the transition labels for this
chart in 1-by-3 RGB array with each
value normalized on a scale of 0 to 1.
Equivalent to changing the label color of
TransitionLabel in the Colors & Fonts
dialog under Edit > Style.

C

Drawing Properties
The following properties control how Stateflow objects are drawn in their
diagrams.

2-12

Graphical Appearance

Property Type Access Description Objects

ArrowSize Double RW Size of transition arrows coming into
this objsect. Equivalent to selecting
Arrowhead Size from the context menu
for this state.

S B F T J

DrawStyle String RW Drawing style for this transition. Set to
'SMART' (default) for smart transitions
or 'STATIC' for static transitions.
Equivalent to selecting Smart from the
context menu for this transition to toggle
between settings.

Note Transition must be connected to
effect a change in the DrawStyle property.
Otherwise, an error occurs.

T

Editor Editor RO Editor object for this chart. C

Font Properties
The following properties change the font used for text in a Stateflow chart.

Property Return Access Description Objects

Font.
Angle

Enum RW Style of the font for the text in this
note. Can be 'ITALIC' or 'NORMAL'.
This property overrides the default
style for this note, which is set by the
StateFont.Angle property of the Chart
object containing this note.

N

Font.
Name

String RO Name of the font for the text in this note.
This property is read-only (RO) and set
by the StateFont.Name property of the
Chart object containing this note.

N

2-13

2 API Properties and Methods by Use

Property Return Access Description Objects

Font.
Size

Double RW Size of the font for the label text for this
note. This property overrides the default
size for this note, which is set by the
StateFont.Size property of the Chart
object containing this note. Equivalent to
selecting Font Size > in the
context menu for this note.

N

Font.
Weight

Enum RW Weight of the font for the label text for
this note. Can be 'BOLD' or 'NORMAL'.
This property overrides the default
weight for the text in this note, which is
set by the StateFont.Weight property of
the Chart object containing this note.

N

FontSize Double RW Size of the font for the label text for
this object. This property overrides
the default size for this object, which
is set by the StateFont.Size property
(TransitionFont.Size for transitions)
of the Chart object containing this object.
Equivalent to selecting Font Size >
 in the context menu for this
object.

S B F T
TT

StateFont.
Angle

Enum RW Font angle for the labels of State, Box,
Function, and Note objects. Can be
'ITALIC' or 'NORMAL'. Equivalent
to Italic and Regular settings when
changing the font style of the StateLabel
in the Colors & Fonts dialog under
Edit > Style. Use with property
StateFont.Weight to achieve Bold Italic
style.

You can individually override this
property with the Font.Angle property
for Note objects.

C

2-14

Graphical Appearance

Property Return Access Description Objects

StateFont.
Name

String RW Font style used for the labels of State,
Box, Function, and Note objects. Enter a
string for the font name – no selectable
values. Font remains set to previous font
for unrecognized font strings. Equivalent
to changing the font of StateLabel
in the Colors & Fonts dialog under
Edit > Style.

C

StateFont.
Size

Integer RW Font size for the labels of State, Box,
Function, and Note objects. Equivalent
to changing the font size of StateLabel
in the Colors & Fonts dialog under
Edit > Style.

You can individually override this
property with the FontSize property for
State, Box, and Function objects and with
the Font.Size property for Note objects.

C

StateFont.
Weight

Enum RW Font weight for state labels. Can be
'BOLD' or 'NORMAL'. Equivalent to Bold
and Regular settings of StateLabel
in the Colors & Fonts dialog under
Edit > Style. Use with the property
StateFont.Angle to achieve Bold Italic
style.

You can individually override this
property with the Font.Weight property
for Note objects.

C

TransitionFont.
Angle

Enum RW Font angle for state labels. Can be
'ITALIC' or 'NORMAL'. Equivalent
to Italic and Regular settings when
changing font style of TransitionLabel
in the Colors & Fonts dialog under
Edit > Style. Use with property
StateFont.Weight to achieve Bold Italic
style.

C

2-15

2 API Properties and Methods by Use

Property Return Access Description Objects

TransitionFont.
Name

String RW Font used for transition labels. Enter
string for font name (no selectable
values). Font remains set to previous font
for unrecognized font strings. Equivalent
to changing the font of TransitionLabel
in the Colors & Fonts dialog under
Edit > Style.

C

TransitionFont.
Size

Integer RW Default font size for transition labels.
Truncated to closest whole number
less than or equal to entered value.
Equivalent to changing font size of
TransitionLabel in the Colors & Fonts
dialog under Edit > Style.

C

TransitionFont.
Weight

Enum RW Font weight for transition labels. Can
be 'BOLD' or 'NORMAL'. Equivalent
to Bold and Regular settings when
changing font style of TransitionLabel
in the Colors & Fonts dialog under
Edit > Style. Use with property
StateFont.Angle to achieve Bold Italic
style.

C

Position Properties
The following properties control the position of Stateflow objects in a Stateflow
diagram.

Property Return Access Description Objects

BadIntersection Boolean RO If true, this object graphically
intersects another state, box, or
function in an invalid way.

S B F TT

2-16

Graphical Appearance

Property Return Access Description Objects

Destination State or
Junction

RW Destination state or junction of this
transition. Assign Destination the
destination object for this transition.

You can also use the property
Destination to detach the
destination end of a transition
through the command
t.Destination = [] where t
is the Transition object.

T

Destination
OClock

Double RW Location of transition destination
connection on state. Varies from 0 to
12 for full clock cycle location. Value
taken as modulus 12 of entered
value.

T

LabelPosition Rect RW Position and size of this transition’s
label in the Stateflow chart, given in
the form of a 1-by-4 array consisting
of the following:

• (x,y) coordinates for the label’s
left upper vertex relative to the
upper left vertex of the Stateflow
diagram editor workspace

• Width and height of the label

T

MidPoint Rect RW Position of the midpoint of this
transition relative to the upper left
corner of the Stateflow diagram
editor workspace, in a 1-by-2 (x,y)
point array.

T

2-17

2 API Properties and Methods by Use

Property Return Access Description Objects

Position Rect RW Position and size of box-like objects
in the Stateflow chart, given in the
form of a 1-by-4 array consisting of
the following:

• (x,y) coordinates for the object’s
left upper vertex relative to the
upper left vertex of the Stateflow
diagram editor workspace

• Width and height of the box

S B F TT
EML N

Position.
Center

Rect RW (x,y) position of junction relative to
the upper left vertex of the parent
chart or state.

J

Position.
Radius

Double RW Radius of this junction. J

Source State or
Junction

RW Source state or junction of this
transition. Assign Source the source
object for this transition.

You can also use the property
Source to detach the source end
of a transition with the command
t.Source = [] where t is the
Transition object.

T

SourceEndPoint Rect RO* x,y spatial coordinates for the
endpoint of a transition.

*This property can be changed only
for default transitions. For all other
transitions it is RO (read only).

T

2-18

Graphical Appearance

Property Return Access Description Objects

SourceOClock Double RW Location of transition source
connection on state. Varies from 0 to
12 for full clock cycle location. Value
taken as modulus 12 of entered
value.

T

WindowPosition Rect RW Position and size of this chart
given in the form of a 1-by-4 array
consisting of the following:

• (x,y) coordinates for the window’s
left bottom vertex relative to the
lower left corner of the screen

• Width and height of the box

ED

Text Properties
The following properties control the text and text appearance apart from
font and color in Stateflow diagrams.

Property Return Access Description Objects

Alignment Enum RW Alignment of text in note box. Can be
'LEFT', 'CENTER', or 'RIGHT'.

N

Interpretation Enum RW How the text in this note is interpreted for
text processing. Can be 'NORMAL' or 'TEX'.

N

LabelString String RW Label for this object. Equivalent to typing
the label for this object in its label text field
in the diagram editor.

S B F T
TT EML

Text String RW Label for this note. The text content for
this note that you enter directly into the
note in the diagram editor or in the Label
field of the Properties dialog for this note.

N

2-19

2 API Properties and Methods by Use

Creating and Deleting Objects
Use the following methods to create and delete Stateflow objects.

Method Description Objects

copy Copy the specified array of objects to the clipboard
for pasting. See also the pasteTo method!!

CB

delete Delete this object. All but R
M C CB
ED

pasteTo Paste the objects in the Clipboard to the specified
container object. See also copy method.

CB

Stateflow.Box Create a box for a parent chart, state, box, or
function.

NA

Stateflow.Data Create a data for a parent machine, chart, state,
box, or function.

NA

Stateflow.Event Create an event for a parent machine, chart, state,
box, or function.

NA

Stateflow.Function Create a graphical function for a parent chart,
state, box, or function.

NA

Stateflow.Junction Create a junction for a parent chart, state, box,
or function.

NA

Stateflow.Note Create a note for a parent chart or state. NA

Stateflow.State Create a state for a parent chart, state, box, or
function.

NA

Stateflow.Target Create a target for a parent machine. NA

Stateflow.Transition Create a transition for a parent chart, state, box,
or function.

NA

Stateflow.TruthTable Create a truth table for a parent state or chart. NA

2-20

Containment

Containment
The following properties control how one Stateflow object contains another
Stateflow object.

Property Type Access Description Objects

Chart Chart RO Chart object containing this object. S B F N T
J TT

Decomposition Enum RW Set this property to
'EXCLUSIVE_OR' to specify
exclusive (OR) decomposition for
the states at the first level of
containment in this chart or state.
Set to 'PARALLEL_AND' to specify
parallel (AND) decomposition
for these states. Equivalent to
selecting the Decomposition in
the context menu for the chart or
state.

C S

IsGrouped Boolean RW If set to true, group this object.

Nothing is allowed to change inside
a grouped object. You must first
ungroup the object before you can
change its contents.

This property is also useful for
copying states and their contents
to a new location. See “Copying
by Grouping (Recommended)” on
page 1-34.

S B F

IsSubchart Boolean RW If set to true, makes this state, box,
or graphical function a subchart.

S B F

Machine Machine RO Machine that contains this object.
A machine object contains all of
the Chart objects in a Model.

C S B F N
T J D E X
TT

2-21

2 API Properties and Methods by Use

Data Definition Properties
The following properties control the type, size, and value of data in Stateflow
diagrams.

Property Return Access Description Objects

DataType Enum RW Data type of this data. Can have
one of the following possible values:
'boolean', 'uint8', 'int8',
'uint16', 'int16', 'uint32',
'int32', 'single', 'double' and
'fixpt'. Equivalent to an entry in the
Type column for this data in Explorer
or the Type field in the properties
dialog for this data.

D

FixptType.
Bias

Double RW The Bias value for this fixed-point
type.

D

FixptType.
FractionalSlope

Double RW The Fractional Slope value for this
fixed-point type.

D

FixptType.
RadixPoint

Integer RW The power of two specifying the binary
point location for this fixed-point type.

D

FixptType.
BaseType

Enum RW The size and sign of the base for the
quantized integer, Q, of this fixed-point
type.

D

ParsedInfo.
Array.
Size

Integer RO Numeric equivalent of string Data
property Props.Array.Size.

D

ParsedInfo.
Array.
FirstIndex

Integer RO Numeric equivalent of string Data
property Props.Range.FirstIndex.

D

ParsedInfo.
InitialValue

Double RO Numeric equivalent of string Data
property Props.InitialValue.

D

ParsedInfo.
Range.
Maximum

Double RO Numeric equivalent of string Data
property Props.Range.Maximum.

D

2-22

Data Definition Properties

Property Return Access Description Objects

ParsedInfo.
Range.
Minimum

Double RO Numeric equivalent of string Data
property Props.Range.Minimum.

D

Port Integer RW Port index number for this input or
output data or event (default = 1).

D E

Props.
Array.
Size

String RW Specifying a positive value for this
property specifies that this data is an
array of specified size. Equivalent to
entering a positive value in the Size
column for this data in the Explorer
or in the Sizes field of the properties
dialog for this data.

D

Props.
Array.
FirstIndex

String RW Index of the first element of this data if
it is an array (Props.Array.Size >=
1). Equivalent to entering a value of
zero or greater in the First Index field
of the Properties dialog for this data.

D

Props.
InitialValue

String RW If the source of the initial value for this
data is the Stateflow data dictionary,
this is the value used. Equivalent
to entering this value in the InitVal
column for this data in the Explorer or
similar field in the Properties dialog
for this data.

D

Props.
Range.
Maximum

String RW Maximum value that this data can
have during execution or simulation
of the state machine. Equivalent to
entering value in Max column for this
data in Explorer or the Max field in
the Properties dialog for this data.

D

2-23

2 API Properties and Methods by Use

Property Return Access Description Objects

Props.
Range.
Minimum

String RW Minimum value that this data can
have during execution or simulation
of the state machine. Equivalent to
entering value in the Min column for
this data in Explorer or in the Min
field in the properties dialog for this
data.

D

SaveToWorkspace Boolean RW If set to true, this data is saved to the
MATLAB workspace. Equivalent to
selecting the ToWS column entry for
this data in the Explorer or selecting
the Save final value to base
workspace field in the properties
dialog for this data.

D

Units String RW Physical units corresponding to the
value of this data object.

D

2-24

Debugging Properties

Debugging Properties
The following properties control values used in debugging Stateflow
applications with the Stateflow Debugger.

Property Type Access Description Objects

Debug.
Animation.
Delay

Double RW Specify a delay (slow down) value for
animation. Equivalent to setting the
Delay (sec) field in the Animation
section of the Debugger window.

M

Debug.
Animation.
Enabled

Boolean RW If true, animation (simulation) is
enabled. If false (=0), disabled.
Equivalent to selecting the Enabled
or Disabled radio button of the
Animation section of the Debugger
window.

M

Debug.
BreakOn.
ChartEntry

Boolean RW If true, sets the chart entry breakpoint
for all charts in this machine.
Equivalent to selecting the Chart
Entry check box on the Debugger
window.

M

Debug.
BreakOn.
EventBroadcast

Boolean RW If true, sets the event broadcast
breakpoint for all charts in this
machine. Equivalent to selecting the
Event Broadcast check box on the
Debugger window.

M

Debug.
BreakOn.
StateEntry

Boolean RW If true, sets the state entry breakpoint
for all states in this machine.
Equivalent to selecting the State
Entry check box on the Debugger
window.

M

Debug.
Breakpoints.
EndBroadcast

Boolean RW If true, sets a debugger breakpoint for
the end of the broadcast of this event.
Equivalent to selecting the End of
broadcast check box in the Properties
dialog for this event.

E

2-25

2 API Properties and Methods by Use

Property Type Access Description Objects

Debug.
Breakpoints.
StartBroadcast

Boolean RW If true, sets a debugger breakpoint for
the start of the broadcast of this event.
Equivalent to selecting the Start of
broadcast check box in the properties
dialog for this event.

E

Debug.
Breakpoints.
onDuring

Boolean RW If true, sets the state during
breakpoint for this chart. Equivalent
to selecting the State During check
box in the properties dialog for this
state.

S

Debug.
Breakpoints.
OnEntry

Boolean RW If true, sets the entry breakpoint for
this object. Equivalent to selecting the
Chart Entry or State Entry check
box in the properties dialog for this
chart or state, respectively.

C S

Debug.
Breakpoints.
OnExit

Boolean RW If true, sets the state entry breakpoint
for this object. Equivalent to selecting
the State Exit check box in the
properties dialog for this object.

S

Debug.
Breakpoints.
WhenTested

Boolean RW If true, sets a debugging breakpoint
to occur when this transition is
tested to see if it is a valid transition.
Equivalent to selecting the When
Tested check box in the properties
dialog of this transition.

T

Debug.
Breakpoints.
WhenValid

Boolean RW If true, sets a debugging breakpoint to
occur when this transition has tested
as valid. Equivalent to selecting
the When Valid check box in the
Properties dialog of this transition.

T

Debug.
DisableAll
Breakpoints

Boolean RW If true, disables the use of all
breakpoints in this machine.
Equivalent to selecting the Disable
all check box in the Debugger window.

M

2-26

Debugging Properties

Property Type Access Description Objects

Debug.
State
RunTimeCheck.
Inconsistencies

Boolean RW If true, checks for state inconsistencies
during a debug session. Equivalent
to selecting the State Inconsistency
check box in the Debugger window.

M

Debug.
RunTimeCheck.
TransitionConflicts

Boolean RW If true, checks for transition conflicts
during a debug session. Equivalent
to selecting the Transition Conflict
check box in the Debugger window.

M

Debug.
RunTimeCheck.
CycleDetection

Boolean RW If true, checks for cyclical behavior
errors during a debug session.
Equivalent to selecting the Detect
Cycles check box in the Debugger
window.

M

Debug.
RunTimeCheck.
DataRangeChecks

Boolean RW If true, checks for data range violations
during a debug session. Equivalent to
selecting the Data Range check box
in the Debugger window.

M

Debug.
Watch

Boolean RW If true, causes the debugger to halt
execution if this data is modified.
Equivalent to selecting the Watch
column entry for this data in the
Explorer or selecting the Watch in
debug check box in the Properties
dialog for this data.

D

IsTestPoint Boolean RW If true (default = false), sets this data
or state as a Stateflow test point. You
can monitor Stateflow test points with
a floating scope during simulation.
You can also log test point values
into MATLAB workspace objects. See
“Monitoring Stateflow Test Points”
in the Stateflow and Stateflow Coder
User’s Guide documentation.

S D

2-27

2 API Properties and Methods by Use

Identifiers
The following properties identify objects or the Stateflow version.

Property Return Access Description Objects

Description String RW Description of this object. Equivalent to
entering a description in the Description field
of the Properties dialog for this object.

M C S B F
N T J D E
X TT

Document String RW Document link to this note. Equivalent to
entering the Document Link field of the
Properties dialog for this object.

M C S B F
N T J D E
X TT

Id Integer RO Unique identifier assigned to this object to
distinguish it from other objects loaded in
memory.

M C S B F
N T J D E
X TT

Name String RW Name of this object.

This property is RW except for the name of
Machine object, which is RO.

M C S B F
D E X TT

SfVersion Double RO Full version number for current Stateflow. For
example, the string '41112101' appears for
Stateflow version 4.1.1 and MATLAB version
12.1. The remaining '01' is for internal use.

M

2-28

Identifiers

Property Return Access Description Objects

Tag Any
Type

RW A field you can use to hold data of any type for
this object.

M C S B F
T J D E X
TT

Type Enum RO Type of this state or junction.

For states, can be one of the following:

• 'OR' (inclusive)

• 'AND' (parallel)

The type of a state is determined by the parent’s
Decomposition property.

For junctions, can be one of the following:

• 'CONNECTIVE'

• 'HISTORY'

S J

2-29

2 API Properties and Methods by Use

Interface to Simulink
The following properties and (methods) control how data and events are input
from and output to the Simulink model for a Stateflow chart.

Property (Method) Type Access Description Objects

ChartUpdate Enum RW Activation method of this chart.
Can be one of the following:

• 'INHERITED' (Triggered or
Inherited)

• 'DISCRETE' (Sampled)

• 'CONTINUOUS' (Continuous)

These preceding entries are
equivalent to the parenthetical
entries for the Update method
field in the Properties dialog for
this chart.

C

ExecuteAtInitialization Boolean RW If set to true, initialize this
chart’s state configuration at
time zero instead of at first
input event. Equivalent to
selecting the Execute (enter)
Chart at Initialization check
box in the chart properties
dialog.

C

ExportChartFunctions Boolean RW If set to true (default =
false), graphical functions
at chart level are made
global. Equivalent to selecting
the Export Chart Level
Graphical Functions (Make
Global) check box in the chart
properties dialog.

C

2-30

Interface to Simulink

Property (Method) Type Access Description Objects

(outputData) No Return NA Output the activity status of
this state to Simulink via a data
output port on the Chart block
of this state.

S

Port Integer RW Port index number for this
input or output data or event
(default = 1).

D E

SampleTime String RW Sample time for activating this
chart. Applies only when the
ChartUpdate property for this
chart is set to 'DISCRETE'

(= Sampled in the Update
method field in the Properties
dialog for this chart).

C

SaveToWorkspace Boolean RW If set to true, this data is saved
to the MATLAB workspace.
Equivalent to selecting the
ToWS column entry for this
data in the Explorer or selecting
the Save final value to
base workspace field in the
properties dialog for this data.

D

2-31

2 API Properties and Methods by Use

Property (Method) Type Access Description Objects

Scope Enum RW Scope of this data. Allowed
values vary with the object
containing this data, which are
as follows:

• 'Local'

• 'Constant'

• 'Imported' (machine objects
only)

• 'Exported' (machine objects
only)

• 'Input' (chart objects only)

• 'Output' (chart objects only)

• 'Temporary' (function
objects only)

• 'Function input' (function
objects only)

• 'Function output'
(function objects only)

Above values correspond to
entries in the Scope field of the
Data or Event dialog.

D E

2-32

Interface to Simulink

Property (Method) Type Access Description Objects

StrongDataTyping
WithSimulink

Boolean RW If set to true, set strong data
typing with Simulink I/O.
Equivalent to the Use Strong
Data Typing with Simulink
I/O check box in the chart
properties dialog.

C

Trigger Enum RW Type of signal that triggers this
chart input event. Also the type
of trigger associated with this
chart output event.

The following triggers apply to
both chart input and output
events:

• 'Either' (Either Edge)

• 'Function call'
(Function Call)

The following triggers apply
only to chart input events:

• 'Rising' (Rising Edge)

• 'Falling' (Falling Edge)

The preceding entries are
equivalent to the entries in
parentheses for the Trigger
field in the Event dialog for
this event.

E

2-33

2 API Properties and Methods by Use

Machine (Model) Identifier Properties
The following properties identify parts of the Simulink model containing a
Stateflow chart.

Property Return Access Description Objects

Created String RO Date of creation of this machine. M

Creator String RW Creator of this machine. M

Dirty Boolean RW If true, this object has changed since it
was opened or saved.

M C

FullFileName String RO Full path name of file under which this
machine (model) is stored.

M

Iced Boolean RO Equivalent to property Locked except
that this property is used internally
to lock this object from being changed
during activities such as simulation.

M C

IsLibrary Boolean RO If true, specifies that the current model
builds a library and not an application.

M

Locked Boolean RW If set to true, prevents user from
changing any Stateflow chart in this
machine or chart.

M C

Modified String RW Comment area for entering date and
name of modification to this machine
(model).

M

Version String RW Comment string for recording version of
this model.

M

2-34

Truth Table Construction Properties

Truth Table Construction Properties
The following properties control the definition of a truth table.

Property Type Access Description Objects

ActionTable Cell
Array

RW A cell array of strings containing the
contents of the Action Table for this
truth table.

TT

ConditionTable Cell
Array

RW A cell array of strings containing the
contents of the Action Table for this
truth table.

TT

OverSpec
Diagnostic

String RW Interprets the error diagnosis of this
truth table as overspecified according to
the possible values 'Error', 'Warning',
or 'None'. In the truth table editor,
the value of this property is assigned
by selecting Overspecified from the
Diagnostics menu item and then
selecting one of the three values.

TT

UnderSpec
Diagnostic

String RW Interprets the error diagnosis of this
truth table as underspecified according to
the possible values 'Error', 'Warning',
or 'None'. In the truth table editor,
the value of this property is assigned
by selecting Underspecified from
the Diagnostics menu item and then
selecting one of the three values.

TT

2-35

2 API Properties and Methods by Use

2-36

3

API Properties and Methods
— By Category

Reference Table Columns (p. 3-5) Describes the columns appearing in
the tables listing the properties and
methods by object in the Stateflow
API.

Constructor Methods (p. 3-6) Lists the constructor methods for
each Stateflow object creatable
through a constructor.

Editor Properties (p. 3-7) Descriptions of properties for the
Editor (diagram editor) in the
Stateflow API.

Editor Methods (p. 3-8) Descriptions of methods for the
Editor (diagram editor) in the
Stateflow API.

Clipboard Methods (p. 3-9) Descriptions of the methods of the
Clipboard used for copying and
pasting objects from chart to chart.

All Object Methods (p. 3-10) Describes methods that belong to all
Stateflow objects.

Root Methods (p. 3-11) Description of the methods of the
Root object that contains all other
Stateflow objects

Machine Properties (p. 3-12) Descriptions of properties for the
Machine object (model) in the
Stateflow API.

3 API Properties and Methods — By Category

Machine Methods (p. 3-16) Descriptions of methods for the
Machine object (model) in the
Stateflow API.

Chart Properties (p. 3-17) Descriptions of properties for Chart
objects (charts) in the Stateflow API.

Chart Methods (p. 3-25) Descriptions of methods for Chart
objects (charts) in the Stateflow API.

State Properties (p. 3-26) Descriptions of properties for State
objects (states) in the Stateflow API.

State Methods (p. 3-30) Descriptions of methods for State
objects (states) in the Stateflow API.

Box Properties (p. 3-32) Descriptions of properties for Box
objects (boxes) in the Stateflow API.

Box Methods (p. 3-34) Descriptions of methods for Box
objects (boxes) in the Stateflow API.

Graphical Function Properties
(p. 3-35)

Descriptions of properties for
Function objects (graphical
functions) in the Stateflow API.

Graphical Function Methods
(p. 3-38)

Descriptions of methods for Function
objects (graphical functions) in the
Stateflow API.

Truth Table Properties (p. 3-39) Descriptions of properties for Truth
Table objects in Stateflow API.

Truth Table Methods (p. 3-42) Descriptions of methods for Truth
Table objects in Stateflow API.

Truth Table Chart Properties
(p. 3-43)

Descriptions of properties for Truth
Table Chart objects in the Stateflow
API.

Truth Table Chart Methods (p. 3-46) Descriptions of methods for Truth
Table Chart objects in Stateflow API.

Embedded MATLAB Function
Properties (p. 3-47)

Descriptions of properties for
Embedded MATLAB Function
objects in the Stateflow API.

3-2

Embedded MATLAB Function
Methods (p. 3-49)

Descriptions of methods for
Embedded MATLAB Function
objects in the Stateflow API.

Note Properties (p. 3-50) Descriptions of properties for Note
objects (notes) in the Stateflow API.

Note Methods (p. 3-52) Descriptions of methods for Note
objects (notes) in the Stateflow API.

Transition Properties (p. 3-53) Descriptions of properties for
Transition objects (transitions) in
the Stateflow API.

Transition Methods (p. 3-57) Descriptions of properties and
methods for Transition objects
(transitions) in the Stateflow API.

Junction Properties (p. 3-58) Descriptions of properties for
Junction objects (junctions) in the
Stateflow API.

Junction Methods (p. 3-59) Descriptions of methods for Junction
objects (junctions) in the Stateflow
API.

Data Properties (p. 3-60) Description of properties for Data
objects (data) in the Stateflow API.

Data Methods (p. 3-65) Description of methods for Data
objects (data) in the Stateflow API.

Event Properties (p. 3-66) Descriptions of properties for Target
objects (targets) in the Stateflow
API.

Event Methods (p. 3-69) Descriptions of methods for Target
objects (targets) in the Stateflow
API.

3-3

3 API Properties and Methods — By Category

Target Properties (p. 3-70) Descriptions of properties for Target
objects (targets) in the Stateflow
API.

Target Methods (p. 3-75) Descriptions of methods for Target
objects (targets) in the Stateflow
API.

3-4

Reference Table Columns

Reference Table Columns
Reference tables for Stateflow API properties and methods have the following
columns:

• Name — The name for the property or method. Each property or method
has a name that you use in dot notation along with a Stateflow object to set
or obtain the property’s value or call the method.

• Type — A data type for the property. Some types are other Stateflow API
objects, such as the Machine property, which is the Machine object that
contains this object.

• Access — An access type for the property. Properties that are listed as
RW (read/write) can be read and changed. For example, the Name and
Description properties of particular objects are RW. However, some
properties are RO (read-only) because they are set by MATLAB itself.

• Description — A description for the property or method. For some
properties, the equivalent GUI operations in Stateflow for setting it are
also given.

3-5

3 API Properties and Methods — By Category

Constructor Methods
The following methods create a new Stateflow object for a parent
object specified as an argument in the general expression o =
Stateflow.Object(p), where o is a handle to an API object for the new
Stateflow object, p is a handle to the parent object, and Object is the type
of the object:

Method Description

Stateflow.Box Create a box for a parent chart, state, box, or function.

Stateflow.Data Create a data for a parent machine, chart, state, box, or function.

Stateflow.EMFunction Create an Embedded MATLAB function for a parent chart or
state.

Stateflow.Event Create an event for a parent machine, chart, state, box, or
function.

Stateflow.Function Create a graphical function for a parent chart, state, box, or
function.

Stateflow.Junction Create a junction for a parent chart, state, box, or function.

Stateflow.Note Create a note for a parent chart, state, box, or function.

Stateflow.State Create a state for a parent chart, state, box, or function.

Stateflow.Target Create a target for a parent machine.

Stateflow.Transition Create a transition for a parent chart, state, box, or function.

Stateflow.TruthTable Create a truth table for a parent chart or state.

3-6

Editor Properties

Editor Properties
The Editor object has the properties in the table below. See also “Editor
Methods” on page 3-8.

Property Type Acc Description

WindowPosition Rect RW Position and size of this chart given in the
form of a 1-by-4 array consisting of the
following:

• (x,y) coordinates for the window’s left
bottom vertex relative to the lower left
corner of the screen

• Width and height of the box

Default value = [124.3125 182.8125 417
348.75]

ZoomFactor Double RW View magnification level (zoom factor) of
this chart in the chart diagram editor. A
value of 1 corresponds to a zoom factor
of 100%, 2 to a value of 200%, and so on.
Default value = 1.

3-7

3 API Properties and Methods — By Category

Editor Methods
The Editor object has the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Editor Properties” on page 3-7.

Method Description

disp Display the property names and their settings for this Editor object.

get Return the specified property settings for the Editor object.

help Display a list of properties for this Editor object with short
descriptions.

methods Display all nonglobal methods of this Editor object.

set Set the specified property of this Editor object with the specified
value.

struct Return and display a MATLAB structure containing the property
settings of this Editor object.

zoomIn and zoomOut Cause the Stateflow chart editor to zoom in or zoom out on this
chart.

3-8

Clipboard Methods

Clipboard Methods
The Clipboard object has the methods displayed in the table below. For details
on each method, see the reference pages.

Method Description

copy Copy the objects specified to this Clipboard object.

get Return the specified property settings for this Clipboard object.

help Display a list of properties for this Clipboard object with short descriptions.

methods Display all nonglobal methods of this Clipboard object.

pasteTo Paste the contents of this clipboard to the specified container object.

set Set the specified property of this Clipboard object with the specified value.

struct Return and display a MATLAB structure containing the property settings of
this Clipboard object.

3-9

3 API Properties and Methods — By Category

All Object Methods
The following methods apply to all API objects including those of Stateflow.
Only object-exclusive methods appear when you use the method methods to
display methods for an object. However, the tables of methods for each API
object that follow do list these methods as if they were their own.

See the reference pages for details on each method.

Method Description

delete Delete this object. Used with all objects except the Root, Machine, Chart,
Clipboard, and Editor objects.

disp Display the property names and their settings for this object.

find Find all objects of this object that meet the specified criteria.

get Return the specified property settings for this object.

methods Display all nonglobal methods of this object.

set Set the specified property of this object with a specified value.

struct Return and display a MATLAB structure containing the property settings
of this object.

up Return the parent (container) object of this object.

3-10

Root Methods

Root Methods
The Root object has the methods displayed in the table below. For details on
each method, see the reference pages.

Method Description

find Find all objects that this Root object contains that meet the specified criteria.

get Return the specified property settings for the Root object.

help Display a list of properties for the Root object with short descriptions.

methods Display all nonglobal methods of this Root object.

set Set the specified property of this Root object with the specified value.

struct Return and display a MATLAB structure containing the property settings of
this Root object.

3-11

3 API Properties and Methods — By Category

Machine Properties
Stateflow API objects of type Machine have the properties shown in the table
below. See also “Machine Methods” on page 3-16.

Property Type Access Description

Created String RO Date of creation of this machine.

Creator String RW Creator (default = 'Unknown') of
this machine.

Debug.
Animation.
Enabled

Boolean RW If set to true (default), animation
(simulation) is enabled. If false,
disabled. Equivalent to the
Enabled or Disabled radio button
of the Animation section of the
Debugger window.

Debug.
Animation.
Delay

Double RW Specify a value to delay (slow
down) animation (default value =
0). Equivalent to the Delay (sec)
field in the Animation section of the
Debugger window.

Debug.
BreakOn.
ChartEntry

Boolean RW If set to true (default = false), set
the chart entry breakpoint for all
charts in this machine. Equivalent
to the Chart Entry check box in
the Debugger window.

Debug.
BreakOn.
EventBroadcast

Boolean RW If set to true (default = false),
set the event broadcast breakpoint
for all charts in this machine.
Equivalent to the Event
Broadcast check box in the
Debugger window.

Debug.
BreakOn.
StateEntry

Boolean RW If set to true (default = false), set
the state entry breakpoint for all
charts in this machine. Equivalent
to the State Entry check box in
the Debugger window.

3-12

Machine Properties

Property Type Access Description

Debug.
DisableAllBreakpoints

Boolean RW If set to true (default = false),
disable the use of all breakpoints
in this machine. Equivalent to
the Disable all check box in the
Debugger window.

Debug.
RunTimeCheck.
CycleDetection

Boolean RW If set to true, check for cyclical
behavior errors during a debug
session. Equivalent to the Detect
Cycles check box in the Debugger
window.

Debug.
RunTimeCheck.
DataRangeChecks

Boolean RW If set to true (default), check for
data range violations during a
debug session. Equivalent to the
Data Range check box in the
Debugger window.

Debug.
RunTimeCheck.
StateInconsistencies

Boolean RW If set to true (default), check for
state inconsistencies during a
debug session. Equivalent to the
State Inconsistency check box in
the Debugger window.

Debug.
RunTimeCheck.
TransitionConflicts

Boolean RW If set to true (default), check
for transition conflicts during a
debug session. Equivalent to the
Transition Conflict check box in
the Debugger window.

Description String RW Description of this state (default
= ''). Equivalent to entering a
description in the Description
field of the properties dialog for this
machine.

Dirty Boolean RW If true (default), this model has
changed since it was opened or
saved.

3-13

3 API Properties and Methods — By Category

Property Type Access Description

Document String RW Document link to this machine
(default = ''). Equivalent to
entering the Document Link field
of the properties dialog for this
machine.

EnableBitOps Boolean RW If true, recognize C bitwise
operators (~, &, |, ^, >>, and so on)
in action language statements for
all Stateflow charts in the model
and encode them as C bitwise
operations.

FullFileName String RO Full path name of file (default value
= '') under which this machine
(model) is stored.

Iced Boolean RO Equivalent to property Locked
(default = false) except that
this property is used internally
to lock this model from being
changed during activities such as
simulation.

Id Integer RO Unique identifier assigned to this
machine to distinguish it from
other objects loaded in memory.

isLibrary Boolean RO If true (default = false), specifies
that the current model builds a
library and not an application.

Locked Boolean RW If set to true (default = false),
prevents user from changing any
Stateflow chart in this model.

Machine Machine RO A handle to the Machine object for
this Machine object, that is, this
Machine object.

3-14

Machine Properties

Property Type Access Description

Modified String RW Comment area (default = '')
for entering date and name of
modification to this model.

Name String RO Name of this model (default =
'untitled') set when saved to
disk.

SfVersion Double RO Full version number for current
Stateflow. For example, the string
'41112101' appears for Stateflow
version 4.1.1 and MATLAB version
12.1. The remaining '01' is for
internal use.

Tag Any
Type

RW A field you can use to hold data of
any type for this machine (default
= []).

Version String RW Comment string (default = 'none')
for recording the version of this
model.

3-15

3 API Properties and Methods — By Category

Machine Methods
Machine objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Machine Properties” on page 3-12.

Method Description

dialog Display the properties dialog of this machine.

disp Display the property names and their settings for this Machine object.

find Find all objects that this machine contains that meet the specified criteria.

Note Do not use the -depth switch with the find method for a machine
object.

get Return the specified property settings for this machine.

help Display a list of properties for this Machine object with short descriptions.

methods Display all nonglobal methods of this Machine object.

parse Parse all the charts in this machine.

set Set the specified property of this Machine object with the specified value.

struct Return and display a MATLAB structure containing the property settings
of this Machine object.

3-16

Chart Properties

Chart Properties
Stateflow API objects of type Chart have the properties shown below. See
also “Chart Methods” on page 3-25.

Property Type Access Description

ChartColor [R,G,B] RW Background color of this chart in
a 1-by-3 RGB array (default = [1
0.9608 0.8824])with each value
normalized on a scale of 0 to 1.

ChartUpdate Enum RW Activation method of this chart.
Can be 'INHERITED' (default),
'DISCRETE', or 'CONTINUOUS'.
Equivalent to the Update method
field in the properties dialog for
this chart, which takes one of the
following corresponding selections:
Triggered or Inherited, Sampled,
Continuous.

Debug.
Breakpoints.
OnEntry

Boolean RW If set to true (default = false), set the
chart entry breakpoint for this chart.
Equivalent to selecting the Chart
Entry check box in the properties
dialog for this chart.

Decomposition Enum RW Set this property to 'EXCLUSIVE_OR'
(default) to specify exclusive (OR)
decomposition for the states at the
first level of containment in this chart.

Set to 'PARALLEL_AND' to specify
parallel (AND) decomposition for
these states. Equivalent to the
Decomposition selection in the
context menu for the Stateflow
diagram editor.

3-17

3 API Properties and Methods — By Category

Property Type Access Description

Description String RW Description (default = '') of this state.
Equivalent to entering a description
in the Description field of the
properties dialog for this chart.

Dirty Boolean RW If set to true (default = false), this
chart has changed since being opened
or saved.

Document String RW Document link (default = '') to
this chart. Equivalent to entering
the Document Link field of the
properties dialog for this chart.

Editor Editor RO Editor object for this chart.

EnableBitOps Boolean RW If set to true (default = false),
enables C-like bit operations in
generated code for this chart.
Equivalent to the Enable C-like bit
operations check box in the chart
properties dialog.

ErrorColor [R,G,B] RW Set the RGB color for errors in the
Stateflow Diagram Editor in a 1-by-3
RGB array (default value [1 0 0])
with each value normalized on a scale
of 0 to 1. Equivalent to changing the
Error color in the Colors & Fonts
dialog under Edit > Style.

ExecuteAtInitialization Boolean RW If set to true (default = false),
this chart’s state configuration is
initialized at time zero instead of at
the first input event. Equivalent to
selecting the Execute (enter) Chart
at Initialization check box in chart
properties dialog

3-18

Chart Properties

Property Type Access Description

InitializeOutputs
EveryTimeChartWakesUp

Boolean RW Applies the initial value of outputs
every time a chart wakes up, not only
at time 0. See “Setting Properties for
Individual Charts”.

ExportChartFunctions Boolean RW If set to true (default = false),
graphical functions at chart level are
made global. Equivalent to selecting
the Export Chart Level Graphical
Functions (Make Global) check box
in chart properties dialog.

Iced Boolean RO Equivalent to property Locked
(default = false) except that this
property is used internally to lock this
chart from change during activities
such as simulation.

Id Integer RO Unique identifier assigned to this
chart to distinguish it from other
objects loaded in memory.

JunctionColor [R,G,B] RW Set the RGB color for junctions in
the Stateflow Diagram Editor in
a 1-by-3 RGB array (default value
[0.6824 0.3294 0]) with each value
normalized on a scale of 0 to 1.
Equivalent to changing the Junction
color in the Colors & Fonts dialog
under Edit > Style.

Locked Boolean RW If set to true (default = false), mark
this chart as read-only and prohibit
any write operations on it. Equivalent
to selecting the Locked check box in
the Editor section of the properties
dialog for this chart.

Machine Machine RO Machine that contains this chart.

3-19

3 API Properties and Methods — By Category

Property Type Access Description

Name String RW Name of this chart (default =
'Chart'). Equivalent to changing the
name of this chart’s Stateflow block in
Simulink.

NoCodegenFor
CustomTargets

Boolean RW If set to true (default = false), no code
is generated for this chart for custom
targets (only for the simulation target,
sfun). Equivalent to the No Code
Generation for Custom Targets
check box in the properties dialog for
this chart.

SampleTime String RW Sample time for activating this chart
(default = ''). Applies only when the
UpdateMethod property for this chart
is set to 'DISCRETE' (= Sampled
in the Update method field in the
properties dialog for this chart).

SelectionColor [R,G,B] RW Color of selected items for this chart
in a 1-by-3 RGB array (default value
[1 0 0.5176]) with each value
normalized on a scale of 0 to 1.
Equivalent to changing the Selection
color in the Colors & Fonts dialog
under Edit > Style.

StateColor [R,G,B] RW Color of the state box in a 1-by-3 RGB
array (default value [0 0 0]) with
each value normalized on a scale of
0 to 1. Equivalent to changing the
State/Frame color in the Colors &
Fonts dialog under Edit > Style.

3-20

Chart Properties

Property Type Access Description

StateFont.
Angle

Enum RW Font angle for the labels of State,
Box, Function, and Note objects. Can
be 'ITALIC' or 'NORMAL' (default).
Equivalent to Italic and Regular
settings when changing the font
style of StateLabel in the Colors &
Fonts dialog under Edit > Style. Use
with property StateFont.Weight to
achieve Bold Italic style.

You can individually override this
property with the Font.Angle
property for Note objects.

StateFont.
Name

String RW Font style (default = 'Helvetica')
used for the labels of State, Box,
Function, and Note objects. Enter a
string for the font name (there are no
selectable values). Font remains set
to previous font for unrecognized font
strings. Equivalent to changing the
font of StateLabel in the Colors &
Fonts dialog under Edit > Style.

StateFont.
Size

Integer RW Default font size for the labels of a
new State, Box, Function, or Note
object. Equivalent to changing the
font size of StateLabel in the Colors
& Fonts dialog under Edit > Style.

You can change the font size for an
existing State, Box, or Function object
with the FontSize property of that
object. You can change the font size
for an existing Note object with its
Font.Size property.

3-21

3 API Properties and Methods — By Category

Property Type Access Description

StateFont.
Weight

Enum RW Font weight for state labels. Can
be 'BOLD' or 'NORMAL' (default).
Equivalent to the Bold and Regular
settings of StateLabel in the
Colors & Fonts dialog under Edit
> Style. Use with the property
StateFont.Angle to achieve Bold
Italic style.

You can individually override this
property with the Font.Weight
property for Note objects.

StateLabelColor [R,G,B] RW Color of the state labels for this chart
in a 1-by-3 RGB array (default = [0 0
0]) with each value normalized on a
scale of 0 to 1. Equivalent to changing
the label color of StateLabel in the
Colors & Fonts dialog under Edit >
Style.

StrongDataTyping
WithSimulink

Boolean RW If set to true (default = false), set
strong data typing with Simulink
I/O. Equivalent to selecting the
Use Strong Data Typing with
Simulink I/O check box in the chart
properties dialog.

Tag Any Type RW A field you can use to hold data of any
type for this chart (default = []).

TransitionColor [R,G,B] RW Set the RGB color for transitions
in the Stateflow Diagram Editor
in a 1-by-3 RGB array (default =
[0.2902 0.3294 0.6039]) with each
value normalized on a scale of 0
to 1. Equivalent to changing the
Transition color in the Colors &
Fonts dialog under Edit > Style.

3-22

Chart Properties

Property Type Access Description

TransitionFont.
Angle

Enum RW Font angle for state labels. Can
be 'ITALIC' or 'NORMAL' (default).
Equivalent to Italic and Regular
settings when you change the font
style of TransitionLabel in the
Colors & Fonts dialog under
Edit > Style. Use with property
StateFont.Weight to achieve Bold
Italic style.

TransitionFont.
Name

String RW Font style (default = 'Helvetica')
used for transition labels. Enter a
string for font name (there are no
selectable values). Font remains set
to previous font for unrecognized
font strings. Equivalent to changing
the font of TransitionLabel in the
Colors & Fonts dialog under Edit >
Style.

TransitionFont.
Size

Integer RW Default font size (default = 12) for
transition labels. Truncated to closest
whole number less than or equal to
entered value. Equivalent to changing
the font size of TransitionLabel in
the Colors & Fonts dialog under
Edit > Style.

TransitionFont.
Weight

Enum RW Font weight for transition labels.
Can be 'BOLD' or 'NORMAL' (default).
Equivalent to Bold and Regular
settings when you change the font
style of TransitionLabel in the
Colors & Fonts dialog under
Edit > Style. Use with property
StateFont.Angle to achieve Bold
Italic style.

3-23

3 API Properties and Methods — By Category

Property Type Access Description

TransitionLabel
Color

[R,G,B] RW Color of the transition labels for this
chart in a 1-by-3 RGB array (default =
[0.2902 0.3294 0.6039]) with each
value normalized on a scale of 0 to 1.
Equivalent to changing the label color
of TransitionLabel in the Colors &
Fonts dialog under Edit > Style.

UserSpecifiedState
TransitionExecutionOrder

Boolean RW If set to true (default = false), you
have complete control of the order in
which transitions originating from
a source are tested for execution.
Equivalent to selecting the User
specified transition execution
order check box in the chart
properties dialog.

Visible Boolean RW If set to true (default), display this
chart in the chart diagram editor.

3-24

Chart Methods

Chart Methods
Chart objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Chart Properties” on page 3-17.

Method Description

defaultTransitions Return the default transitions in this chart at the top level of
containment.

dialog Display the properties dialog of this chart.

disp Display the property names and their settings for this Chart
object.

find Find all objects that this chart contains that meet the specified
criteria.

get Return the specified property settings for this chart.

help Display a list of properties for this Chart object with short
descriptions.

methods Display all nonglobal methods of this Chart object.

parse Parse this chart.

set Set the specified property of this Chart object with the
specified value.

struct Return and display a MATLAB structure containing the
property settings of this Chart object.

view Display this chart in a Stateflow diagram editor.

3-25

3 API Properties and Methods — By Category

State Properties
Stateflow API objects of type State have the properties listed in the table
below. See also “State Methods” on page 3-30.

Property Type Acc Description

ArrowSize Double RW Size of transition arrows coming into this
state (default = 8). Equivalent to selecting
Arrowhead Size from the context menu
for this state.

BadIntersection Boolean RO If true, this state graphically intersects a
box, graphical function, or other state.

Chart Chart RO Chart object containing this state.

Debug.
Breakpoints.
onDuring

Boolean RW If set to true (default = false), set the state
entry breakpoint for this chart. Equivalent
to selecting the State During check box in
the properties dialog for this state.

Debug.
Breakpoints.
OnEntry

Boolean RW If set to true (default = false), set the state
entry breakpoint for this chart. Equivalent
to selecting the State Entry check box in
the properties dialog for this state.

Debug.
Breakpoints.
onExit

Boolean RW If set to true (default = false), set the state
entry breakpoint for this chart. Equivalent
to selecting the State Exit check box in the
properties dialog for this state.

Decomposition Enum RW Set this property to 'EXCLUSIVE_OR'
(default) to specify exclusive (OR)
decomposition for the states at the first
level of containment in this state.

Set to 'PARALLEL_AND' to specify parallel
(AND) decomposition for these states.
Equivalent to the Decomposition
selection in the context menu for the state.

3-26

State Properties

Property Type Acc Description

Description String RW Description of this state (default = '').
Equivalent to entering a description in the
Description field of the properties dialog
for this state.

Document String RW Document link to this state (default = '').
Equivalent to entering the Document
Link field of the properties dialog for this
state.

FontSize Double RW Size of the font (default = 12) for the label
text for this state. This property overrides
the font size set for this state at creation
by the StateFont.Size property of the
containing Chart’s object. Equivalent to
selecting Font Size > in the
context menu for this state.

HasOutputData Boolean RW If set to true (default = false), create a
data output port on the Stateflow block for
this state with its activity status. If the
state is active, the output value is 1. If the
state is inactive, the output is 0. This is
equivalent to selecting the Output State
Activity check box in the State properties
dialog for this state.

Id Integer RO Unique identifier assigned to this state to
distinguish it from other objects loaded in
memory.

IsGrouped Boolean RW If set to true (default = false), group this
state.

Nothing is allowed to change inside a
grouped state.

This property is also useful for copying
states to a new location. See “Copying by
Grouping (Recommended)” on page 1-34.

3-27

3 API Properties and Methods — By Category

Property Type Acc Description

IsSubchart Boolean RW If set to true (default = false), make this
state a subchart.

IsTestPoint Boolean RW If set to true (default = false), sets this
data or state as a Stateflow test point.
You can monitor individual Stateflow test
points with a floating scope during model
simulation. You can also log test point
values into MATLAB workspace objects.
See Monitoring Stateflow Test Points in
the Stateflow and Stateflow Coder User’s
Guide documentation for details.

LabelString String RW Label for this state (default = '?').
Equivalent to typing the label for this state
in its label text field in the diagram editor.

Machine Machine RO Machine containing this state.

Name String RW Name of this state (default = '').
Equivalent to typing this state’s name
into the beginning of the label text field
for this state in the diagram editor. Name
is separated from the remainder of this
state’s label text by a forward slash (/)
character.

Position Rect RW Position and size of this state’s box in
the Stateflow chart, given in the form of
a 1-by-4 array (default is [0 0 90 60])
consisting of the following:

• (x,y) coordinates for the box’s left upper
vertex relative to the upper left vertex of
the Stateflow diagram editor workspace

• Width and height of the box

Subviewer Chart or
State

RO State or chart in which this state can be
graphically viewed.

3-28

State Properties

Property Type Acc Description

Tag Any Type RW Holds data of any type (default = []) for
this state.

Type Enum RO Type of this state (default = 'OR'). Can
be 'OR' (exclusive) or 'AND' (parallel).
The type of this state is determined by the
parent’s Decomposition property.

3-29

3 API Properties and Methods — By Category

State Methods
State objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “State Properties” on page 3-26.

Method Description

defaultTransitions Return the default transitions in this state at the top level of
containment.

delete Delete this state.

dialog Display the properties dialog of this state.

disp Display the property names and their settings for this State
object.

find Find all objects that this state contains that meet the specified
criteria.

get Return the specified property settings for this state.

help Display a list of properties for this State object with short
descriptions.

innerTransitions Return the inner transitions that originate with this state and
terminate on a contained object.

methods Display all nonglobal methods of this State object.

outerTransitions Return an array of transitions that exit the outer edge of this
state and terminate on an object outside the containment of
this state.

outputData Output the activity status of this state to Simulink via a data
output port on the chart block of this state.

set Set the specified property of this State object with the specified
value.

sourcedTransitions Return all inner and outer transitions whose source is this state.

3-30

State Methods

Method Description

struct Return and display a MATLAB structure containing the
property settings of this State object.

view Display this state’s chart in a diagram editor with this state
highlighted.

3-31

3 API Properties and Methods — By Category

Box Properties
The following are properties of Stateflow API objects of type Box. See also
“Box Methods” on page 3-34.

Property Type Acc Description

ArrowSize Double RW Size of transition arrows coming into this
box (default = 8). Equivalent to selecting
Arrowhead Size from the context menu
for this box.

BadIntersection Boolean RO If true, this box graphically intersects a
state, graphical function, or other box.

Chart Chart RO Chart object containing this box.

Description String RW Description of this box (default = '').
Equivalent to entering a description in the
Description field of the properties dialog
for this box.

Document String RW Document link to this box (default = '').
Equivalent to entering the Document
Link field of the properties dialog for this
box.

FontSize Double RW Size of the font (default = 12) for the label
text of this box. This property overrides
the font size set for this box at creation
by the StateFont.Size property of the
containing Chart’s object. Equivalent to
selecting Font Size > in the
context menu for this box.

Id Integer RW Unique identifier assigned to this box to
distinguish it from other objects loaded in
memory.

IsGrouped Boolean RW If set to true (default = false), group this
box.

IsSubchart Boolean RW If set to true (default = false), make this
box a subchart.

3-32

Box Properties

Property Type Acc Description

LabelString String RW Label for this box (default = '?').
Equivalent to typing the label for this box
in its label text field in the diagram editor.

Machine Machine RO Machine that contains this box.

Name String RW Name of this box (default = '').
Equivalent to typing this box’s name into
the beginning of the label text field for this
box in the diagram editor.

Position Rect RW Position and size of this box in the
Stateflow chart, given in the form of a
1-by-4 array (default is [0 0 90 60])
consisting of the following:

• (x,y) coordinates for the box’s left upper
vertex relative to the upper left vertex of
the Stateflow diagram editor workspace

• Width and height of the box

Subviewer Chart or State RO State or chart in which this box can be
graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for
this box.

3-33

3 API Properties and Methods — By Category

Box Methods
Box objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Box Properties” on page 3-32.

Method Description

defaultTransitions Return the default transitions in this box at the top level of
containment.

delete Delete this box.

dialog Display the properties dialog of this box.

disp Display the property names and their settings for this Box object.

find Find all objects that this box contains that meet the specified
criteria.

get Return the specified property settings for this box.

help Display a list of properties for this Box object with short
descriptions.

innerTransitions Return the inner transitions that originate with this box and
terminate on a contained object.

methods Display all nonglobal methods of this Box object.

outerTransitions Return an array of transitions that exit the outer edge of this box
and terminate on an object outside the containment of this box.

set Set the specified property of this Box object with the specified
value.

sourcedTransitions Return all inner and outer transitions whose source is this box.

struct Return and display a MATLAB structure containing the property
settings of this Box object.

view Display this box’s chart in a diagram editor with this box
highlighted.

3-34

Graphical Function Properties

Graphical Function Properties
Stateflow API objects of type Function have the properties listed in the table
below. See also “Graphical Function Methods” on page 3-38.

Property Type Access Description

ArrowSize Double RW Size of transition arrows coming into
this graphical function (default = 8).
Equivalent to selecting Arrowhead Size
from the context menu for this function.

BadIntersection Boolean RO If true, this state graphically intersects a
state, box, or other graphical function.

Chart Chart RO Chart object containing this function.

Description String RW Description of this function (default = '').
Equivalent to entering a description in
the Description field of the properties
dialog for this function.

Document String RW Document link to this function.
Equivalent to entering the Document
Link field of the properties dialog for this
function.

FontSize Double RW Size of the (default = 12) font of the label
text for this function. This property
overrides the font size set for this function
at creation by the StateFont.Size
property of the containing Chart’s object.
Equivalent to selecting Font Size >
 in the context menu for this
function.

Id Integer RO Unique identifier assigned to this function
to distinguish it from other objects in the
model.

3-35

3 API Properties and Methods — By Category

Property Type Access Description

InlineOption Boolean RW Determine how generated code for this
graphical function is implemented.
Possible settings are as follows:

'Inline' – Call to function is replaced by
code.

'Function' – Function becomes a C
function.

'Auto' – Stateflow determines if the
function is inlined or made a function
through an internal calculation.

IsGrouped Boolean RW If set to true (default = false), group this
function.

IsSubchart Boolean RW If set to true (default = false), make this
function a subchart.

LabelString String RW Label for this function (default = '()').
Equivalent to typing the label for this
function in its label text field in the
diagram editor.

Machine Machine RO Machine that contains this function.

Name String RW Name of this function (default = '').
Equivalent to typing this function’s name
into the beginning of the label text field
after the word 'function' in the diagram
editor.

3-36

Graphical Function Properties

Property Type Access Description

Position Rect RW Position and size of this function’s box in
the Stateflow chart, given in the form of
a 1-by-4 array (default is [0 0 90 60])
consisting of the following:

• (x,y) coordinates for the box’s left
upper vertex relative to the upper left
vertex of the Stateflow diagram editor
workspace

• Width and height of the box

Subviewer Chart or
State

RO State or chart in which this function can
be graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for
this function.

3-37

3 API Properties and Methods — By Category

Graphical Function Methods
Function objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Graphical Function Properties” on page 3-35.

Method Description

defaultTransitions Return the default transitions in this function at the top level
of containment.

delete Delete this function.

dialog Display the properties dialog of this function.

disp Display the property names and their settings for this Function
object.

find Find all objects that this graphical function contains that meet
the specified criteria.

get Return the specified property settings for this function.

help Display a list of properties for this Function object with short
descriptions.

methods Display all nonglobal methods of this Function object.

set Set the specified property of this Function object with the
specified value.

sourcedTransitions Return all inner and outer transitions whose source is this
function.

struct Return and display a MATLAB structure containing the
property settings of this Function object.

view Display this function’s chart in a diagram editor with this state
highlighted.

3-38

Truth Table Properties

Truth Table Properties
Stateflow API objects of type TruthTable have the properties listed in the
table below. See also “Truth Table Methods” on page 3-42.

Property Type Access Description

ActionTable Cell Array RW A cell array of strings containing the
contents of the Action Table for this truth
table.

ArrowSize Double RW Size of transition arrows coming into
the truth table function in the Stateflow
diagram (default = 8). Equivalent to
selecting Arrowhead Size from the
context menu for this function.

BadIntersection Boolean RO If true, this truth table graphically
intersects a state, box, graphical function,
or other truth table.

Chart Chart RO Chart object containing this truth table.

ConditionTable Cell Array RW A cell array of strings containing the
contents of the Condition Table for this
truth table, including the Actions row.

Description String RW Description of this truth table (default =
''). Equivalent to entering a description
in the Description field of the properties
dialog for this truth table.

Document String RW Document link to this truth table.
Equivalent to entering the Document
Link field of the properties dialog for this
truth table.

3-39

3 API Properties and Methods — By Category

Property Type Access Description

FontSize Double RW Size of the (default = 12) font of the label
text for this truth table. This property
overrides the font size set for this truth
table at creation by the StateFont.Size
property of the containing Chart’s object.
Equivalent to selecting Font Size > font
size in the context menu for this truth
table.

Id Integer RO Unique identifier assigned to this truth
table to distinguish it from other objects
in the model.

LabelString String RW Full label for this truth table (default
= ’()’) including its return, name, and
arguments. Equivalent to typing the
label for this truth table in its label text
field in the diagram editor.

Machine Machine RO Machine that contains this truth table.

Name String RW Name of this truth table (default = '').
Equivalent to typing a name for this truth
table into the label text field of the truth
table box in the diagram editor. Label
syntax is return = Name (arguments).

OverSpecDiagnostic String RW Interprets the error diagnosis of this
truth table as overspecified according to
the possible values ’Error’, ’Warning’, or
’None’. In the truth table editor, the value
of this property is assigned by selecting
Overspecified from the Diagnostics
menu item and then selecting one of the
three values.

3-40

Truth Table Properties

Property Type Access Description

Position Rect RW Position and size of this truth table’s box
in the Stateflow chart, given in the form
of a 1-by-4 array (default is [0 0 90 60])
consisting of the following:

• (x,y) coordinates for the box’s left
upper vertex relative to the upper left
vertex of the Stateflow diagram editor
workspace

• Width and height of the box

Subviewer Chart or
State

RO State or chart in which this truth table
can be graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for
this truth table.

UnderSpecDiagnostic String RW Interprets the error diagnosis of this
truth table as underspecified according to
the possible values ’Error’, ’Warning’, or
’None’. In the truth table editor, the value
of this property is assigned by selecting
Underspecified from the Diagnostics
menu item and then selecting one of the
three values.

3-41

3 API Properties and Methods — By Category

Truth Table Methods
Truth table objects have the methods displayed in the table below. For details
on each method, see the reference pages.

See also “Truth Table Properties” on page 3-39.

Method Description

delete Delete this truth table.

dialog Display the properties dialog of this truth table.

disp Display the property names and their settings for this truth table object.

find Find all objects that this graphical truth table contains that meet the
specified criteria.

get Return the specified property settings for this truth table.

help Display a list of properties for this truth table object with short descriptions.

methods Display all nonglobal methods of this truth table object.

set Set the specified property of this truth table object with the specified value.

struct Return and display a MATLAB structure containing the property settings of
this truth table object.

view Display this truth table’s chart in a diagram editor with this state
highlighted.

3-42

Truth Table Chart Properties

Truth Table Chart Properties
Stateflow API objects of type TruthTableChart have the properties listed in
the table below. See also “Truth Table Chart Methods” on page 3-46.

Property Type Access Description

ActionTable Cell Array RW A cell array of strings containing
the contents of the Action Table
for this truth table block.

ChartUpdate Enum RW Activation method of this chart.
Can be ’INHERITED’ (default),
’DISCRETE’, or ’CONTINUOUS’.

ConditionTable Cell Array RW A cell array of strings containing
the contents of the Condition
Table for this truth table block,
including the Actions row.

Description String RW Description of this truth table
block (default = ''). Equivalent
to entering a description in
the Description field of the
properties dialog for this truth
table block.

Dirty Boolean RW If set to true (default = false), this
chart has changed since being
opened or saved.

Document String RW Document link to this truth table
block.

Iced Boolean RO Equivalent to property Locked
(default = false) except that this
property is used internally to lock
this block from change during
activities such as simulation.

Id Integer RO Unique identifier assigned to this
truth table block to distinguish it
from other objects in the model.

3-43

3 API Properties and Methods — By Category

Property Type Access Description

InputFimath embedded.fimath
object

RW The embedded.fimath object that
will be associated with inputs
from Simulink.

LabelString String RW Full label for this truth table
(default = ’()’) including its
return, name, and arguments.
Equivalent to typing the label for
this truth table in its label text
field in the diagram editor.

Locked Boolean RW If set to true (default = false),
mark this block as read-only and
prohibit any write operations on
it.

Machine Machine RO Machine that contains this truth
table block.

Name String RW Name of this truth table block.
(default = ''). Equivalent to
typing a name for this truth table
into the label text field of the truth
table box in the diagram editor.
Label syntax is return = Name
(arguments).

OverSpecDiagnostic String RW Interprets the error diagnosis of
this truth table as overspecified
according to the possible values
’Error’, ’Warning’, or ’None’. In
the truth table editor, the value
of this property is assigned by
selecting Overspecified from the
Settings menu item and then
selecting one of the three values.

Path String RW Path to the block.

SampleTime String RW Sample time for activating this
chart (default = ’’).

3-44

Truth Table Chart Properties

Property Type Access Description

Tag Any Type RW Holds data of any type (default =
[]) for this truth table block.

TreatInheritedIntegersAs String RW Determines how inherited integer
signals are treated in Embedded
MATLAB.

The two choices are Integers and
Fixed-point. Simulink does not
distinguish between a fixed-point
signal with zero fraction length
and an integer signal. However,
MATLAB has two different
classes for these two kinds of data:
Integers (uint8, int16, etc...) and
embedded.fi.

You can specify the type for any
given input signal to be either
Integer or fixed-point and
override this default.

UnderSpecDiagnostic String RW Interprets the error diagnosis of
this truth table as underspecified
according to the possible values
’Error’, ’Warning’, or ’None’. In
the truth table editor, the value
of this property is assigned by
selecting Underspecified from
the Settings menu item and then
selecting one of the three values.

3-45

3 API Properties and Methods — By Category

Truth Table Chart Methods
Truth Table Chart objects have the methods displayed in the table below. For
details on each method, see the reference pages.

See also “Truth Table Chart Properties” on page 3-43.

Method Description

defaultTransitions Return the default transitions in this object at the top level of containment.

delete Delete this truth table.

dialog Display the properties dialog of this truth table.

disp Display the property names and their settings for this truth table object.

find Find all objects that this graphical truth table contains that meet the
specified criteria.

get Return the specified property settings for this truth table.

help Display a list of properties for this truth table object with short descriptions.

methods Display all nonglobal methods of this truth table object.

set Set the specified property of this truth table object with the specified value.

struct Return and display a MATLAB structure containing the property settings of
this truth table object.

view Display this truth table’s chart in a diagram editor with this state
highlighted.

3-46

Embedded MATLAB Function Properties

Embedded MATLAB Function Properties
Stateflow API objects for Embedded MATLAB Functions have the properties
listed in the table below. See also “Embedded MATLAB Function Methods”
on page 3-49.

Property Type Access Description

ArrowSize Double RW Size of transition arrows coming into
the Embedded MATLAB function in
the Stateflow diagram (default = 8).
Equivalent to selecting Arrowhead Size
from the context menu for this function.

BadIntersection Boolean RO If true, this Embedded MATLAB function
graphically intersects a state, box,
graphical function, truth table, or other
Embedded MATLAB function.

Chart Chart RO Chart object containing this Embedded
MATLAB function.

Description String RW Description of this Embedded MATLAB
function (default = ''). Equivalent to
entering a description in the Description
field of the properties dialog for this
Embedded MATLAB function.

Document String RW Document link to this Embedded MATLAB
function. Equivalent to entering the
Document Link field of the properties
dialog for this Embedded MATLAB
function.

FontSize Double RW Size of the (default = 12) font of the label
text for this Embedded MATLAB function.
This property overrides the font size set
for this Embedded MATLAB function at
creation by the StateFont.Size property
of the containing Chart object. Equivalent
to selecting Font Size > font size in the
context menu for this Embedded MATLAB
function.

3-47

3 API Properties and Methods — By Category

Property Type Access Description

Id Integer RO Unique identifier assigned to this
Embedded MATLAB function to
distinguish it from other objects in the
model.

LabelString String RW Full label for this Embedded MATLAB
function (default = '()') including its
return, name, and arguments. Equivalent
to typing the label for this Embedded
MATLAB function in its label text field in
the diagram editor.

Machine Machine RO Machine that contains this Embedded
MATLAB function.

Name String RW Name of this Embedded MATLAB function
(default = ''). Equivalent to typing a name
for this Embedded MATLAB function into
the label text field of the truth table box
in the diagram editor. Label syntax is
return = Name (arguments).

Position Rect RW Position and size of this Embedded
MATLAB function in the Stateflow chart,
given in the form of a 1-by-4 array (default
is [0 0 90 60]) consisting of the following:

• (x,y) coordinates for the box’s left upper
vertex relative to the upper left vertex of
the Stateflow diagram editor workspace

• Width and height of the box

Subviewer Chart or State RO State or chart in which this Embedded
MATLAB function can be graphically
viewed.

Tag Any Type RW Holds data of any type (default = []) for
this Embedded MATLAB function.

3-48

Embedded MATLAB Function Methods

Embedded MATLAB Function Methods
Embedded MATLAB Function objects have the methods displayed in the table
below. For details on each method, see the reference pages.

See also “Embedded MATLAB Function Properties” on page 3-47.

Method Description

delete Delete this Embedded MATLAB function.

dialog Display the properties dialog of this Embedded MATLAB function.

disp Display the property names and their settings for this Embedded MATLAB
function object.

find Find all objects that this Embedded MATLAB function contains that meet
the specified criteria.

get Return the specified property settings for this Embedded MATLAB functions.

help Display a list of properties for this Embedded MATLAB function with short
descriptions.

methods Display all nonglobal methods of this Embedded MATLAB object.

set Set the specified property of this Embedded MATLAB object with the specified
value.

struct Return and display a MATLAB structure containing the property settings
of this Embedded MATLAB object.

view Opens this Embedded MATLAB function in the Embedded MATLAB Editor.

3-49

3 API Properties and Methods — By Category

Note Properties
Stateflow API objects of type Note have the properties listed in the table
below. See also “Note Methods” on page 3-52.

Property Type Access Description

Alignment Enum RW Alignment of text in note box. Can be 'LEFT'
(default), 'CENTER', or 'RIGHT'.

Chart Chart RO Chart object containing this note.

Description String RW Description of this note (default = ''). Equivalent
to entering a description in the Description field
of the properties dialog for this note.

Document String RW Document link to this note (default = '').
Equivalent to entering the Document Link field
of the properties dialog for this note.

Font.
Name

String RO Name of the font (default = 'Helvetica') for the
text in this note. This property is read-only (RO)
and set by the StateFont.Name property of the
Chart object containing this note.

Font.
Angle

String RW Style of the font for the text in this note. Can be
'ITALIC' or 'NORMAL' (default). This property
overrides the default style for this note, which
is set by the StateFont.Angle property of the
Chart object containing this note.

Font.
Size

Double RW Size of the font (default = 12) for the label
text for this note. This property overrides the
font size set for this note at creation by the
StateFont.Size property of the containing
Chart’s object. Equivalent to selecting Font Size
> in the context menu for this note.

Font.
Weight

String RW Weight of the font for the label text for this
note. Can be 'BOLD' or 'NORMAL' (default).
This property overrides the default weight
for the text in this note, which is set by the
StateFont.Weight property of the Chart object
containing this note.

3-50

Note Properties

Property Type Access Description

Id Integer RO Unique identifier assigned to this note to
distinguish it from other objects in the model.

Interpretation Enum RW How the text in this note is interpreted for text
processing. Can be 'NORMAL' (default) or 'TEX'.

Machine Machine RO Machine that contains this note.

Position Rect RW Position and size of this note’s box in the
Stateflow chart, given in the form of a 1-by-4
array (default is [0 0 25 25]) consisting of the
following:

• (x,y) coordinates for the box’s left upper
vertex relative to the upper left vertex of the
Stateflow diagram editor workspace

• Width and height of the box

Subviewer Chart or
State

RO State or chart in which this note can be
graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for this note.

Text String RW Label for this note (default = '?'). The text
content for this note that you enter directly into
the note in the diagram editor or in the Label
field of the properties dialog for this note.

3-51

3 API Properties and Methods — By Category

Note Methods
Note objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Note Properties” on page 3-50.

Method Description

delete Delete this note.

dialog Display the properties dialog of this note.

disp Display the property names and their settings for this Note object.

get Return the specified property settings for this note.

help Display a list of properties for this Note object with short descriptions.

methods Display all nonglobal methods of this Note object.

set Set the specified property of this Note object with the specified value.

struct Return and display a MATLAB structure containing the property settings of
this Note object.

view Display this note’s chart in a diagram editor with this note highlighted.

3-52

Transition Properties

Transition Properties
Stateflow API objects of type Transition have the properties listed in the table
below. See also “Transition Methods” on page 3-57.

Property Type Access Description

ArrowSize Double RW Size of the arrow (default = 10) for this transition.

Chart Chart RO Stateflow chart object containing this transition.

Debug.
Breakpoints.
WhenTested

Boolean RW If set to true (default = false), set a debugging
breakpoint to occur when this transition is tested
to see whether it is a valid transition or not.
Equivalent to selecting the When Tested check
box in the properties dialog of this transition.

Debug.
Breakpoints.
WhenValid

Boolean RW If set to true (default = false), set a debugging
breakpoint to occur when this transition has
tested as valid. Equivalent to selecting the When
Valid check box in the properties dialog of this
transition.

Description String RW Description of this transition (default = '').
Equivalent to entering a description in the
Description field of the properties dialog for
this transition.

Destination State or
Junction

RW Destination state or junction (default = []) of this
transition. Assign Destination the destination
object for this transition.

You can also use the property Destination
to detach the destination end of a transition,
through the command t.Destination = []
where t is the Transition object.

DestinationOClock Double RW Location of transition destination connection on
state (default = 0). Varies from 0 to 12 for full
clock cycle location. Its value is taken as modulus
12 of its assigned value.

3-53

3 API Properties and Methods — By Category

Property Type Access Description

Document String RW Document link to this transition (default = '').
Equivalent to entering the Document Link field
of the properties dialog for this transition.

DrawStyle Enum RW Drawing style for this transition. Set to 'SMART'
(default) for smart transitions or 'STATIC' for
static transitions. Equivalent to selecting Smart
from the context menu for this transition to
toggle between settings.

Note Transition must be connected to effect a
change in the DrawStyle property. Otherwise,
an error occurs.

ExecutionOrder Integer RW Specifies the number for this transition in
the execution order for its source (for
details, see Transition Testing Order). The
UserSpecifiedStateTransitionExecutionOrder
property of the parent chart has to be set to true,
otherwise, this transition property will be
ignored. ExecutionOrder has to be an integer
between 1 and m, where m is the total number of
transitions originating from the source.

FontSize Double RW Size of the font (default = 12) for the label
text for this box. This property overrides the
default size for this box, which is set by the
TransitionFont.Size property of the Chart
object containing this box. Equivalent to
selecting Font Size > in the context
menu for this box.

Id Integer RO Unique identifier assigned to this transition
to distinguish it from other objects loaded in
memory.

3-54

Transition Properties

Property Type Access Description

LabelPosition Rect RW Position and size of this note’s box in the
Stateflow chart, given in the form of a 1-by-4
array (default is [0 0 8 14]) consisting of the
following:

• (x,y) coordinates for the box’s left upper
vertex relative to the upper left vertex of the
Stateflow diagram editor workspace

• Width and height of the box

LabelString String RW Label for this transition (default = '?').
Equivalent to typing the label for this transition
in its label text field in the diagram editor.

Machine Machine RO Machine containing this transition.

MidPoint Rect RW Position of the midpoint of this transition relative
to the upper left corner of the Stateflow diagram
editor workspace in an [x y] point array (default
= [0 0]).

Source State or
Junction

RW Source state or junction of this transition (default
= []). Assign Source the source object for this
transition.

You can also use the property Source to detach
the source end of a transition, through the
command t.Source = [] where t is the
Transition object.

SourceEndPoint Rect RO* [x y] spatial coordinates for the endpoint of a
transition (default = [2 2]). This property is RW
(read/write) only for default transitions. For all
other transitions it is RO (read-only).

SourceOClock Double RW Location of transition source connection on state
(default = 0). Varies from 0 to 12 for full clock
cycle location. The value taken for this property
is the modulus 12 of the entered value.

3-55

3 API Properties and Methods — By Category

Property Type Access Description

Subviewer Chart or
State

RO State or chart in which this transition can be
graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for this
transition.

3-56

Transition Methods

Transition Methods
Transition objects have the methods displayed in the table below. For details
on each method, see the reference pages.

See also “Transition Properties” on page 3-53.

Method Description

delete Delete this transition.

dialog Display the properties dialog of this transition.

disp Display the property names and their settings for this Transition object.

get Return the specified property settings for this transition.

help Display a list of properties for this Transition object with short descriptions.

methods Display all nonglobal methods of this Transition object.

set Set the specified property of this Transition object with the specified value.

struct Return and display a MATLAB structure containing the property settings
of this Transition object.

view Display this transition’s chart in a diagram editor with this transition
highlighted.

3-57

3 API Properties and Methods — By Category

Junction Properties
Stateflow API objects of type Junction have the properties listed in the table
below. See also “Junction Methods” on page 3-59.

Property Type Access Description

ArrowSize Double RW Size of transition arrows (default = 8) coming
into this junction.

Chart Chart RO Chart that this junction resides in.

Description String RW Description of this junction (default = '').
Equivalent to entering a description in the
Description field of the properties dialog for
this junction.

Document String RW Document link to this junction (default = '').
Equivalent to entering the Document Link
field of the properties dialog for this junction.

Id Integer RO Unique identifier assigned to this junction
to distinguish it from other objects loaded in
memory.

Machine Machine RO Machine containing this junction.

Position.
Center

Rect RW Position of the center of this junction (default
= [10 10]) relative to the upper left corner
of the parent chart or state as an [x,y] point
array.

Position.
Radius

Rect RO Radius of this junction (default = 10).

Subviewer Chart or State RO State or chart in which this junction can be
graphically viewed.

Tag Any Type RW Holds data of any type (default = []) for this
junction.

Type Enum RO Type of this junction. For junctions, can be
'CONNECTIVE' (default) or 'HISTORY'

3-58

Junction Methods

Junction Methods
Junction objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Junction Properties” on page 3-58.

Method Description

delete Delete this junction.

dialog Display the properties dialog for this junction

disp Display the property names and their settings for this Junction
object.

get Return the specified property settings for this junction.

help Display a list of properties for this Junction object with short
descriptions.

methods Display all nonglobal methods of this Junction object.

set Set the specified property of this Junction object with the
specified value.

sourcedTransitions Return all inner and outer transitions whose source is this
junction.

struct Return and display a MATLAB structure containing the
property settings of this Junction object.

view Display this junction’s chart in a diagram editor with this
junction highlighted.

3-59

3 API Properties and Methods — By Category

Data Properties
Stateflow API objects of type Data have the properties listed in the table
below. See also “Data Methods” on page 3-65.

Property Type Access Description

DataType Enum RW Data type of this data. Can be 'double' (default),
'single', 'int32', 'int16', 'int8', 'uint32',
'uint16', 'uint8', 'boolean', 'fixpt', or 'ml'.

Equivalent to an entry in the Type column for this
data in Explorer or the Type field in the properties
dialog for this data.

Debug.
Watch

Boolean RW If set to true (default = false), causes the debugger
to halt execution if this data is modified. Setting
this property to true is equivalent to selecting the
Watch column entry for this data in the Explorer
or selecting the Watch in debug check box in the
properties dialog for this data.

Description String RW Description of this data (default = ''). Equivalent to
entering a description in the Description field of
the properties dialog for this data.

Document String RW Document link to this data (default = ''). Equivalent
to entering the Document Link field of the
properties dialog for this data.

FixptType.
BaseType

Enum RW The size and sign of the base integer type for the
quantized integer, Q, representing this fixed-point
type. Can be 'int32', 'int16', 'int8', 'uint32',
'uint16', or 'uint8' (default).

FixptType.Bias Double RW The Bias value for this fixed-point type (default = 0).

FixptType.Lock Boolean RW If set to true (default = false), base type, bias,
fractional slope and radix point of the fixed point type
for this data is locked from autoscaling. Equivalent
to selecting Lock output scaling against changes
by the autoscaling tool in the Data properties
dialog.

3-60

Data Properties

Property Type Access Description

FixptType.
FractionalSlope

Double RW The Fractional Slope value for this fixed-point type
(default = 1).

FixptType.
RadixPoint

Integer RW The power of 2 specifying the binary-point location
for this fixed-point type (default = 0).

Id Integer RO Unique identifier assigned to this data to distinguish
it from other objects loaded in memory.

Inherit
DataSize

Boolean RW If set to true (default = false), this data inherits its
size from the data input or output it is connected to.

Inherit
DataType

Boolean RW If set to true (default = false), this data inherits its
type from the data input or output it is connected to.

InitFrom
Workspace

Boolean RW If set to true (default = false), this data is initialized
from the MATLAB workspace. Setting this property
to true is equivalent to selecting the FrWS column
entry for this data in the Explorer or setting the
Initialize from field to workspace in the properties
dialog for this data.

IsComplex Boolean RW If set to true (default = false), this data is complex.
(Not yet implemented in Stateflow).

IsTestPoint Boolean RW If set to true (default = false), sets this data or state
as a Stateflow test point. You can monitor individual
Stateflow test points with a floating scope during
model simulation. You can also log test point values
into MATLAB workspace objects. See Monitoring
Stateflow Test Points in the Stateflow and Stateflow
Coder User’s Guide documentation for details.

Machine Machine RO Machine that contains this data.

Name String RW Name of this data (default = 'datan', where n is a
counter of data with the name root data). Equivalent
to entering the name of this data in the Name field
of its properties dialog. Also can be named (renamed)
in the Explorer by double-clicking the entry in the
Name column for this data and editing.

3-61

3 API Properties and Methods — By Category

Property Type Access Description

OutputState State RO State whose activity this data represents as an
output. Create the data for this state through the
State method outputData. Equivalent to selecting
Output State Activity property for this state.

ParsedInfo.
Array.
Size

Integer RO Numeric equivalent of Data property
Props.Array.Size, a String (default = []).

ParsedInfo.
Array.
FirstIndex

Integer RO Numeric equivalent of Data property
Props.Range.FirstIndex, a String (default
= 0).

ParsedInfo.
Initial
Value

Double RO Numeric equivalent of Data property
Props.InitialValue, a String (default =
0).

ParsedInfo.
Range.
Maximum

Double RO Numeric equivalent of Data property
Props.Range.Maximum, a String (default =
inf).

ParsedInfo.
Range.
Minimum

Double RO Numeric equivalent of Data property
Props.Range.Minimum, a String (default =
-inf).

Port Integer RO Port index number for this data (default = 1).

Props.
Array.
Size

String RW Specifying a positive value for this property specifies
that this data is an array of this size (default = 0).
Equivalent to entering a positive value in the Size
column for this data in the Explorer or in the Sizes
field of the properties dialog for this data.

Props.
Array.
FirstIndex

String RW Index of the first element of this data (default = 0)
if it is an array (that is, Props.Array.Size > 1).
Equivalent to entering a value of zero or greater in
the First Index field of the properties dialog for this
data.

3-62

Data Properties

Property Type Access Description

Props.
InitialValue

String RW If the source of the initial value for this data is the
Stateflow data dictionary, this is the value used
(default = 0). Equivalent to entering this value in
the InitVal column for this data in the Explorer or
similar field in the properties dialog for this data.

Props.
Range.
Maximum

String RW Maximum value (default = '') that this data can
have during execution or simulation of the state
machine. Equivalent to entering value in the Max
column for this data in Explorer or the Max field in
the properties dialog for this data.

Props.
Range.
Minimum

String RW Minimum value (default = '') that this data can
have during execution or simulation of the state
machine. Equivalent to entering a value in the Min
column for this data in Explorer or the Min field in
the properties dialog for this data.

SaveTo
Workspace

Boolean RW If set to true (default = false), this data is saved
to the MATLAB workspace. Setting this property
to true is equivalent to selecting the ToWS column
entry for this data in the Explorer or selecting the
Save final value to base workspace field in the
properties dialog for this data.

3-63

3 API Properties and Methods — By Category

Property Type Access Description

Scope Enum RW Scope of this data. Allowed values vary with object
type. Equivalent to selecting the value shown in the
Scope field of the Data properties dialog.

The following apply to any data object:

• 'Local'

• 'Constant'

The following apply to data for machines only:

• 'Imported'

• 'Exported'

The following apply to data for charts only:

• 'Input' (Input to Simulink)

• 'Output' (Output to Simulink)

The following applies only to data for functions:

• 'Temporary'

• 'Function input'

• 'Function output'

Tag Any Type RW Holds data of any type for this Data object (default
= []).

Units String RW Physical units corresponding to the value of this data
object (default = '').

3-64

Data Methods

Data Methods
Data objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Data Properties” on page 3-60.

Method Description

delete Delete this data.

dialog Display the properties dialog of this Data object.

disp Display the property names and their settings for this Data object.

get Return the specified property settings for this data.

help Display a list of properties for this Data object with short
descriptions.

methods Display all nonglobal methods of this Data object.

set Set the specified property of this Data object with the specified
value.

struct Return and display a MATLAB structure containing the property
settings of this Data object.

view Display this data in the Data properties dialog.

3-65

3 API Properties and Methods — By Category

Event Properties
Stateflow API objects of type Event have the properties listed in the table
below. See also “Event Methods” on page 3-69.

Property Type Access Description

Debug.
Breakpoints.
StartBroadcast

Boolean RW If set to true (default = false),
set a debugger breakpoint for the
start of the broadcast of this event.
Equivalent to selecting the Start
of broadcast check box in the
properties dialog for this event.

Debug.
Breakpoints.
EndBroadcast

Boolean RW If set to true (default = false),
set a debugger breakpoint for the
end of the broadcast of this event.
Equivalent to selecting the End
of broadcast check box in the
properties dialog for this event.

Description String RW Description of this event (default
= ''). Equivalent to entering a
description in the Description
field of the properties dialog for this
event.

Document String RW Document link to this event (default
= ''). Equivalent to entering
the Document Link field of the
properties dialog for this event.

Id Integer RO Unique identifier assigned to this
event to distinguish it from other
objects loaded in memory.

Machine Machine RO Machine this event belongs to.

3-66

Event Properties

Property Type Access Description

Name String RW Name of this event (default = eventn,
where n is a counter of events with
the name root event). Equivalent
to entering the name in the Name
field of the properties dialog for this
event.

Port Integer RO Port index number for this event
(default = 1).

Scope Enum RW Scope of this event. Allowed values
vary with the object containing this
data.

The following applies to any event:

• 'Local'

The following apply to events for
charts only:

• 'input' (Input fromSimulink
in properties dialog)

• 'Output' (Output to Simulink
in properties dialog)

The following apply to events for
machines only:

• 'Imported'

• 'Exported'

3-67

3 API Properties and Methods — By Category

Property Type Access Description

Tag Any Type RW Holds data of any type (default = [])
for this event.

Trigger Enum RW Type of signal that triggers this
chart input event. Also the type of
trigger associated with this chart
output event. Equivalent to the
entries for the Trigger field in the
Event dialog for this event.

The following triggers apply to both
chart input and output events:

• 'Either' (Either Edge)

• 'Function call' (Function
Call)

The following triggers apply only to
chart input events:

• 'Rising' (Rising Edge)

• 'Falling' (Falling Edge)

3-68

Event Methods

Event Methods
Event objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Event Properties” on page 3-66.

Method Description

delete Delete this event.

dialog Display the properties dialog for this event.

disp Display the property names and their settings for this Event object.

get Return the specified property settings for this event.

help Display a list of properties for this Event object with short descriptions.

methods Display all nonglobal methods of this Event object.

set Set the specified property of this Event object with the specified value.

struct Return and display a MATLAB structure containing the property settings
of this Event object.

view Display this event in its properties dialog.

3-69

3 API Properties and Methods — By Category

Target Properties
Stateflow API objects of type Target have the properties listed in the table
below. See also “Target Methods” on page 3-75.

Property Type Access Description

ApplyToAllLibs Boolean RW If set to true (default), use settings
in this target for all libraries.
Equivalent to selecting the Use
settings for all libraries check
box in this target’s Target Builder
dialog.

CodeFlagsInfo Array RO A MATLAB vector of structures
containing information on the
code flag settings for this target.
See special topic CodeFlagsInfo
Property of Targets for more
information.

CodegenDirectory String RW Directory to receive generated code
(default = ''). Equivalent to the
entry in the Generated Code
Directory panel of the Target
Options dialog for this target.
Applies only to targets other than
sfun and rtw targets.

CustomCode String RW Custom code included at the top
of the generated code (default =
''). Equivalent to the entry in the
Include Code panel of the Target
Options dialog for this target.

CustomInitializer String RW Custom initialization code (default
= ''). Equivalent to the entry in
the Initialization Code panel of
the Target Options dialog for this
target. Applies only to sfun and
rtw targets.

3-70

Target Properties

Property Type Access Description

CustomTerminator String RW Custom termination code (default
= ''). Equivalent to the entry in
the Termination Code panel of
the Target Options dialog for this
target. Applies only to sfun and
rtw targets.

Description String RW Description of this target (default
= ''). Equivalent to entering a
description in the Description
field of the properties dialog for this
target.

Document String RW Document link to this target
(default = ''). Equivalent to
entering the Document Link field
of the properties dialog for this
target.

Id Integer RO Unique identifier assigned to this
Target object to distinguish it from
other objects loaded in memory.

Machine Machine RO Stateflow machine containing this
target.

Name String RW Name of this target (default =
'untitled'). Equivalent to naming
or renaming this target in the
Explorer.

ReservedNames String RW Comma- or space-separated list
of names to not use in Stateflow
generated code. Equivalent to the
entry in the Reserved Names
panel of the Target Options dialog.

Tag Any Type RW Holds data of any type (default =
[]) for this target.

3-71

3 API Properties and Methods — By Category

Property Type Access Description

UserIncludeDirs String RW Custom include directory paths
(default = ''). Equivalent to the
entry in the Include Paths panel
of the Target Options dialog for this
target.

UserLibraries String RW Custom libraries (default = '').
Equivalent to the entry in the
Libraries panel of the Target
Options dialog for this target.

UserSources String RW Custom source files (default = '').
Equivalent to the entry in the
Source Files panel of the Target
Options dialog for this target.

CodeFlagsInfo Property of Targets
The CodeFlagsInfo property of a Target object is a read-only MATLAB
vector of structures containing information on the code flag settings for its
target. Each element in the vector has the following MATLAB structure of
information about a particular code flag:

Element Type Description

name String Short name for this flag

type String The type of the code flag

description String A description of this code flag

defaultValue Boolean The default value of this code flag upon creation
of its target

visible Boolean Whether or not this flag is visible

enable Boolean Whether or not to enable this flag

value Boolean The value of the flag

The first element of each structure is a shorthand name for the individual
flag that you set in the Coder Options dialog. For example, the name

3-72

Target Properties

'comments' actually refers to the dialog setting Comments in generated
code. While the CodeFlagsInfo property is informational only, you can use
these shorthand flag names in the methods getCodeFlag and setCodeFlag to
access and change the values of a flag.

The names of each of the possible code flags in the CodeFlagsInfo property
along with the name of the flag as it appears in the Coder Options dialog
for the target are as follows:

Name in CodeFlagsInfo Name in Properties Dialog Target Default Value

debug Enable debugging/animation sfun Enabled

overflow Enable overflow detection
(with debugging)

sfun Enabled

echo Echo expressions without
semicolons

sfun Enabled

comments Comments in generated code rtw,
custom

Disabled
Enabled

preservenames Preserve symbol names rtw,
custom

Disabled

preservenameswithparent Append symbol names with
no mangling

rtw,
custom

Disabled

exportcharts Use chart names with no
mangling

rtw,
custom

Disabled

statebitsets Use bitsets for storing state
configuration

rtw,
custom

Disabled

databitsets Use bitsets for storing
boolean data

rtw,
custom

Disabled

3-73

3 API Properties and Methods — By Category

Name in CodeFlagsInfo Name in Properties Dialog Target Default Value

ioformat Enumerated value can be one of
the following:

• 0 = Use global input/output
data

• 1 = Pack input/output data
into structures

• 2 = Separate argument for
input/output data

custom 0

initializer Generate chart initializer
function

custom Disabled

multi
instanced

Multi-instance capable code custom Disabled

ppcomments Comments for
Post-processing

custom Disabled

For detailed descriptions of each of the preceding code flags, see Configuring
a Custom Target in Stateflow in the Stateflow and Stateflow Coder User’s
Guide documentation.

3-74

Target Methods

Target Methods
Target objects have the methods displayed in the table below. For details on
each method, see the reference pages.

See also “Target Properties” on page 3-70.

Method Description

build Build this target only for those portions of the target’s charts
that have changed since the last build (i.e., incrementally).

delete Delete this target.

dialog Display the properties dialog for this target.

disp Display the property names and their settings for this Target
object.

get Return the specified property settings for this target.

getCodeFlag Return the value of the specified code flag for this target.

help Display a list of properties for this Target object with short
descriptions.

make Compile this target for only those portions of this target’s
charts that have changed since the last compile (i.e.,
incrementally). For a simulation target (sfun), a dynamic
link library (sfun.dll) is compiled from the generated code.

methods Display all nonglobal methods of this Target object.

rebuildAll Completely rebuild this target.

regenerateAll Completely regenerate code for this target.

set Set the specified property of this Target object with the
specified value.

setCodeFlag Set the specified code flag for this target with the specified
value.

struct Return and display a MATLAB structure containing the
property settings of this Target object.

view Display this target in the Target properties dialog.

3-75

3 API Properties and Methods — By Category

3-76

4

API Methods —
Alphabetical List

This section contains references for the methods of the Stateflow API.

4 API Methods — Alphabetical List

List of API Methods
The following table lists and describes the methods of the Stateflow API:

Method Purpose

build Build this target incrementally

classhandle Provide a handle to the schema class of this object’s type

copy Copy the specified array of objects to the clipboard

defaultTransitions Return the default transitions in this object at the top level of
containment

delete Delete this object

dialog Open the Properties dialog of this object

disp Display the properties and settings for this object

find Return specified objects in this object at all levels of
containment

generate Generate code incrementally for this target

get Return a MATLAB structure containing the property settings
of this object

getCodeFlag Return the specified code flag

help Display the list of properties for this object along with short
descriptions

innerTransitions Return the inner transitions that originate with this chart or
state and terminate on a contained object

make Make (compile, link, load) this target incrementally with no
code generation

methods List the names of the methods belonging to this object

outerTransitions Return an array of outer transitions for this state

outputData Create, retrieve, or delete a data output to Simulink of this
state’s activity status

parse Parse this chart

4-2

List of API Methods

Method Purpose

pasteTo Paste the objects in the clipboard to the specified container
object

rebuildAll Completely rebuild this target

regenerateAll Completely regenerate code for this target

set Set specified properties with the specified values

setCodeFlag Set the specified code flag to the value you specify

sourcedTransitions Return the transitions that have this object as their source

Stateflow.Box Create a box for a parent chart, state, or box

Stateflow.Data Create a data for a parent machine, chart, state, or box

Stateflow.EMFunction Create an Embedded MATLAB Function for a parent machine,
chart, state, box, or graphical function

Stateflow.Event Create an event for a parent machine, chart, state, or box

Stateflow.Function Create a graphical function for a parent chart, state, or box

Stateflow.Junction Create a junction for a parent chart, state, or box

Stateflow.Note Create a note for a parent chart, state, or box

Stateflow.State Create a state for a parent chart, state, or box

Stateflow.Target Create a target for a parent machine.

Stateflow.Transition Create a transition for a parent chart, state, box, or function.

Stateflow.TruthTable Create a truth table for a parent chart, state, or box

struct Return a MATLAB structure containing the property settings
of this object

up Return the parent (container) object of this object

view Make this object visible for editing

zoomIn and zoomOut Zoom in or out on this chart

4-3

build

Purpose Build this target incrementally

Syntax thisTarget.build

Description The build method incrementally builds this target. It performs the
following activities:

• Parses all charts completely.

• Generates code for charts incrementally.

• For a simulation target (sfun), a dynamic link library (sfun.dll) is
compiled from the generated code.

If a complete build has already taken place, the build method performs
an incremental build that builds only those portions of the target
corresponding to charts that have changed since the last build.

Arguments Name Description

thisTarget The Target object to build.

Returns None

Example If t is a Target object, the command t.build builds the target for the
Stateflow charts that have changed in the target’s model since the last
build and/or code generation.

See Also The methods rebuildAll, generate, regenerateAll, and make

4-4

classhandle

Purpose Provide a handle to the schema class of this object’s type

Syntax handle = thisObject.classhandle

Description The classhandle method returns a read-only handle to the schema
class of this object’s type. You can use the classhandle method to
provide information about the structure of each object type.

Arguments thisObject The object for which to return a handle. Can be any
Stateflow object.

Returns handle Handle to schema class of this object.

Example If j is a Junction object, the class handle of a Junction object is
j.classhandle. You can see the class schema for a Junction object by
using the following get command:

j.classhandle.get

Two member arrays of the displayed class schema are Properties and
Methods. These two members are members of the schema class for
every object.

List the class schema for Properties with the following command:

j.classhandle.Properties.get

Two displayed members of the Properties schema are Name and
DataType. Finally, using the class handle for a junction, you can display
the properties of a Junction object along with their data types with the
following command:

get(j.classhandle.Properties,{'Name','DataType'})

4-5

copy

Purpose Copy the specified array of objects to the clipboard

Syntax cbObj.copy(objArray)

Description The copy method copies the specified objects to the clipboard. Objects to
copy are specified through a single argument array of objects.

Later, complete the copy operation by invoking the pasteTo method.

Arguments cbObj The Clipboard object to copy to.

objArray Array of Stateflow objects to copy. These objects must
conform to the following:

• The objects copied must be all graphical (states, boxes,
functions, transitions, junctions) or all nongraphical
(data, events, targets).

• If all objects are graphical, they must all be seen in
the same subviewer.

Returns None

Example See “Copying Objects” on page 1-33.

4-6

defaultTransitions

Purpose Return the default transitions in this object at the top level of
containment

Syntax defaultTransitions = thisObject.defaultTransitions

Description The defaultTransitions method returns the default transitions in
this object at the top level of containment.

Arguments thisObject The object for which to return default transitions.
Can be an object of type Chart, State, Box, or
Function.

Returns defaultTransitions Array of default transitions in this object at
the top level of containment.

Example If state A contains state A1, and state A1 contains state A11, and
states A1 and A11 have default transitions attached to them, the
defaultTransitions method of state A returns the default transition
attached to state A1.

4-7

delete

Purpose Delete this object

Syntax thisObject.delete

Description The delete method deletes this object from the model. This is true for
all but objects of type Root, Chart, Clipboard, and Editor.

Arguments thisObject The object to delete. Can be an object of type Machine,
State, Box, Function, Truth Table, Note, Transition,
Junction, Data, Event, or Target.

Returns None

Example If a state A is represented by the State object sA, the command
sA.delete deletes state A.

4-8

dialog

Purpose Open the Properties dialog of this object

Syntax thisObject.dialog

Description The dialog method opens the Properties dialog of its object.

Arguments thisObject The object for which to open the properties dialog. Can
be an object of type Machine, State, Box, Function,
Truth Table, Note, Transition, Junction, Data, Event,
or Target.

Returns None

Example If state A is represented by State object sA, the MATLAB statement
sA.dialog opens the Properties dialog for state A.

4-9

disp

Purpose Display the properties and settings for this object

Syntax thisObject.disp

Description The disp method displays the properties and settings for this object.
This is true for all but objects of type Root and Clipboard.

Arguments thisObject The object to display properties and settings for.
Can be an object of type Machine, Chart, State, Box,
Function, Truth Table, Note, Transition, Junction,
Data, Event, or Target.

Returns None

Example If a state A is represented by the State object sA, the command sA.disp
displays the property names and their settings for state A.

4-10

find

Purpose Return specified objects in this object at all levels of containment

Syntax objArray = thisObject.find(Specifier,Value, ...)

Note You can also nest specifications using braces ({}).

Description Using combinations of specifier-value argument pairs, the find method
returns objects in this object that match the specified criteria. The
specifier-value pairs can be property based or based on other attributes
of the object such as its depth of containment. Specifiers can also be
logical operators (-and, -or, etc.) that combine other specifier-value
pairs.

By default, the find command finds objects at all depths of containment
within an object. You can specify the maximum depth of search with
the -depth specifier. However, the zeroth level of containment, i.e.,
the searched object itself, is always included if it happens to satisfy
the search criteria.

If no arguments are specified, the find command returns all objects of
this object at all levels of containment.

Arguments thisObject The object for which to find contained objects. Can be
an object of type Root, Machine, State, Box, Function,
or Truth Table.

'-and' No value is paired to this specifier. Instead, this
specifier relates a previous specifier-value pair to a
following specifier-value pair in an AND relation.

4-11

find

'-class' String class name of the class to search for. Use this
option to find all objects whose class exactly matches a
given class. To allow matches for subclasses of a given
class, use the -isa specifier. Classes are specified
as the string name (e.g., 'Stateflow.State',
'Stateflow.Transition', etc.) or as a handle to the
class (see the method classhandle).

'-depth' Integer depth to search, which can be 0,1,2,...,infinite.
The default search depth is infinite.

Note Do not use the '-depth' switch with the find
method for a machine object.

'-function' Handle to a function that evaluates each object visited
in the search. The function must always return a
logical scalar value that indicates whether or not
the value is a match. If no property is specified, the
function is passed the handle of the current object in
the search. If a property is specified, the function is
passed the value of that property.

In the following example, a function with handle f
(defined in first line) is used to filter a find to return
only those objects of type ’andState’:

f = @(h) (strcmp(get(h,'type'), 'andState'));
objArray = thisObject.find('-function', f);

'-isa' Name of the type of objects to search for. Object
types are specified as a string name (e.g.,
'Stateflow.State', 'Stateflow.Transition',
etc.) or as a handle to the object type (see method
classhandle).

4-12

find

'-method' String that specifies the name of a method belonging
to the objects to search for.

'-not' No value is paired to this specifier. Instead, this
specifier searches for the negative of the following
specifier-value pair.

'-or' No value is paired to this specifier. Instead, this
specifier relates the previous specifier-value pair to
the following specifier-value pair in an OR relation.

Note If no logical operator is specified, -or is
assumed.

'property' The specifier takes on the name of the property. Value
is the string value of the specified property for the
objects you want to find.

'-property' String name of the property that belongs to the objects
you want to find.

'-xor' No value is paired to this specifier. Instead, this
specifier relates the previous specifier-value pair to
the following specifier-value pair in an XOR relation.

'-regexp' No value follows this specifier. Instead, this specifier
indicates that the value of the following specifier-value
pair contains a regular expression.

Returns objArray Array of objects found matching the criteria specified
(see Arguments)

Example If a Chart object c represents a Stateflow chart, the command
states=c.find('-isa','Stateflow.State') returns an
array, states, of all the states in the chart, and the command

4-13

find

states=c.find('Name','A') returns an array of all objects whose
Name property is 'A'.

If state A, which is represented by State object sA, contains two states,
A1 and A2, and you specify a find command that finds all the states
in A as follows,

states= sA.find('-isa','Stateflow.State')

then the above command finds three states: A, A1, and A2.

4-14

generate

Purpose Generate code incrementally for this target

Syntax thisTarget.generate

Description The generate method generates code incrementally for this target.
If a complete code generation has already taken place, it performs
an incremental generation for only those portions of the target
corresponding to charts that have changed since the last code
generation.

Arguments thisTarget The target for which to generate code.

Returns None

Example If t is a Target object, the command t.generate generates code for
the Stateflow charts that have changed in the target’s model since the
last code generation.

See Also The methods build, rebuildAll, regenerateAll, and make

4-15

get

Purpose Return a MATLAB structure containing the property settings of this
object or an array of objects

Syntax propList = thisObject.get(prop)

Description The get method returns and displays a MATLAB structure containing
the settings for the specified property of this object. If no property is
specified, the settings for all properties are returned.

The get method is also vectorized so that it returns an m-by-n cell array
of values for an array of m objects and an array of n properties.

Arguments thisObject The object for which to get specified property.

prop String name of property (e.g., 'FontSize') to get value
for. Can also be an array of properties (see return
propList below). If no property is specified, a list of
all properties is returned.

Returns propList MATLAB structure listing the properties of this object.
Can also be an m by n cell array of values if thisObject
is an array of m objects and prop is an array of n
properties.

Example State A is represented by the State object sA.

The following command lists the properties of state A:

sA.get

The following command returns a handle to a MATLAB structure of the
properties of state A to the workspace variable Aprops:

Aprops = sA.get

4-16

getCodeFlag

Purpose Return the specified code flag

Syntax thisTarget.getCodeFlag(name)

Description The getCodeFlag method returns the value of a particular code flag
whose name you specify.

Arguments thisTarget The target for which to get code flag value

name The short string name of the code flag for which to get
value. See “CodeFlagsInfo Property of Targets” on
page 3-72 for a list of these names.

Returns None

Example Assume that the Target object x represents the simulation target sfun
for the loaded model. If m is the Stateflow machine object for this model,
you can obtain x with the following command:

x = m.find('-isa','Stateflow.Target','-and', 'Name','sfun')

The simulation target has two code flags: debug and echo. You can
verify this by looking at the CodeFlagsInfo property of x. See the
description of this property in “Target Properties” on page 3-70 for more
information.

In the Stateflow user interface, the debug code flag is enabled or
disabled through the Enable debugging/animation check box in
the Coder Options dialog. By default, this flag is turned on for the
simulation target. You can verify this with the following command:

t.getCodeFlag('debug')

4-17

getCodeFlag

Similarly, you can check the value of the echo code flag, which is enabled
or disabled through the Echo expressions without semicolons check
box of the same dialog, with the following command:

t.getCodeFlag('echo')

See Also The method setCodeFlag

4-18

help

Purpose Display the list of properties for this object along with accompanying
descriptions

Syntax thisObject.help

Description The help method returns a list of properties for any object. To the
right of this list appear simple descriptions for each property. Some
properties do not have descriptions because their names are descriptive
in themselves.

Arguments None

Returns None

Example If j is an API handle to a Stateflow junction, the command j.help
returns a list of the property names and descriptions for a Stateflow
API object of type Junction.

4-19

innerTransitions

Purpose Return the inner transitions that originate with this chart or state and
terminate on a contained object

Syntax transitions = thisObject.innerTransitions

Description The innerTransitions method returns the inner transitions that
originate with this object and terminate on a contained object.

Arguments None

Returns thisObject Object for which to get inner transitions. Can be of type
State or Box.

transitions Array of inner transitions originating with this object
and terminating on a contained state or junction.

Example State A contains state A1, and state A1 contains state A11. State
A has two transitions, each originating from its inside edge and
terminating inside it. These are inner transitions. One transition
terminates with state A1 and the other terminates with state A11. The
innerTransitions method of state A returns both of these transitions.

4-20

make

Purpose Incrementally compile this target with no code generation

Syntax thisTarget.make

Description For a simulation target (sfun) a dynamic link library (sfun.dll) is
compiled from the generated code. The make method performs an
incremental compile of this target with no code generation. It performs
the compile for only those portions of generated code that have changed
since the last compile.

Arguments thisTarget The target for which to do make.

Returns None

Example If t is a Target object, the command t.make incrementally compiles
generated code for that target. If t is a simulation target (sfun), its
compiled code is then linked and loaded into the target .dll. file.

See Also The methods build, rebuildAll, generate, and regenerateAll

4-21

methods

Purpose List the names of the methods belonging to this object

Syntax thisObject.methods

Description The methods method lists the names of the methods belonging to this
object.

Note The methods method for this object displays some internal
methods that are not applicable to Stateflow use, and are
not documented. These are as follows: areChildrenOrdered,
getChildren, getDialogInterface, getDialogSchema,
getDisplayClass, getDisplayIcon, getDisplayLabel,
getFullName, getHierarchicalChildren, getPreferredProperties,
isHierarchical, isLibrary, isLinked, isMasked.

Arguments thisObject Object for which to list methods. Can be of any
Stateflow object type.

Returns None

Example If state A is represented by State object sA, the command sA.methods
lists the methods of state A.

4-22

outerTransitions

Purpose Return an array of outer transitions for this object

Syntax transitions = thisObject.outerTransitions

Description The outerTransitions method returns an array of transitions that
exit the outer edge of this object and terminate on objects outside the
containment of this object.

Arguments None

Returns thisObject The object for which to find outer transitions. Can
be of object type State or Box.

transitions An array of transitions exiting the outer edge of this
state.

Example A chart contains three states, A, B, and C. State A is connected to state
B through a transition from state A to state B. State B is connected
to state C through a transition from state B to state C. And state C
is connected to state A through a transition from state C to state
A. If state A is represented by State object handle sA, the command
sA.outerTransitions returns the transition from state A to state B.

4-23

outputData

Purpose Create, retrieve, or delete a data output to Simulink of this state’s
activity status

Syntax StateData = thisState.outputData (action)

Description The outputData method of this state creates, retrieves, or deletes a
special data object of type State. This data is attached internally to an
output port on this state’s Stateflow block in Simulink to output the
activity status of this state to Simulink during run-time.

Note You cannot use the Stateflow Explorer to create Data objects of
type State.

Arguments thisState The state object for which to add a special port.

action This string value can be one of the following:

• 'create' — Returns a new data object of type State
and attaches it internally to a new state activity
output port on this state’s Stateflow block.

• 'get' — Returns this state’s existing data object of
type State attached internally to an existing state
activity output port on this state’s Stateflow block.

• 'delete' — Deletes this state’s data object of type
State and the state activity output port on its
Stateflow block to which it is attached.

Returns StateData The data object of type State for this state

4-24

outputData

Example If state A is represented by State object sA, the following command
creates a new data object of type State, which is output to Simulink and
contains state A’s activity:

s.outputData('create')

The Stateflow Chart block in Simulink that contains state A now has
an output port labeled A, the name of state A. In Explorer, state A
now contains a data object of type State whose scope is Output to
Simulink.

The following command returns a Data object, d, for the data output to
Simulink containing state A’s activity:

s.outputData('get')

The following command deletes the data output to Simulink containing
state A’s activity:

s.outputData('delete')

4-25

parse

Purpose For Chart objects, parse this chart; for Machine objects, parse the
charts in this machine

Syntax thisChart.parse
thisMachine.parse

Description For Chart objects, the parse method parses this chart. This is
equivalent to selecting Parse from the Tools menu of the Stateflow
diagram editor for this chart.

For Machine objects, the parse method parses all the charts in this
machine.

Arguments thisChart The chart to parse.

thisMachine The machine containing charts to parse.

Returns None

Example If ch is a handle to an API object representing a chart, then the
command ch.parse parses the chart.

4-26

pasteTo

Purpose Paste the objects in the Clipboard to the specified container object

Syntax clipboard.pasteTo(newContainer)

Description The paste method pastes the contents of the Clipboard to the specified
container object. The receiving container is specified through a single
argument. Use of this method assumes that you placed objects in the
Clipboard with the copy method.

Arguments newContainer The Stateflow object to receive a copy of the contents
of the Clipboard object. If the objects in the
Clipboard are all graphical (states, boxes, functions,
notes, transitions, junctions), this object must be a
chart or subchart.

Returns None

Example See the section “Copying Objects” on page 1-33.

4-27

rebuildAll

Purpose Completely rebuild this target

Syntax thisTarget.rebuildAll

Description The rebuildAll method completely rebuilds this target with the
following actions:

• Parses all charts completely.

• Regenerates code for all charts completely.

• For a simulation target (sfun), a dynamic link library (sfun.dll) is
compiled from the generated code.

Arguments thisTarget The Stateflow target to rebuild.

Returns None

Example If t is a Target object, the command t.rebuildAll completely rebuilds
that target.

See Also The methods build, generate, regenerateAll, and make

4-28

regenerateAll

Purpose Completely regenerate code for this target

Syntax thisTarget.regenerateAll

Description The regenerateAll method regenerates this target. Regardless of
previous code generations, it regenerates code for all charts in this
target’s model.

Arguments thisTarget The Stateflow target for which to regenerate code.

Returns None

Example If t is a Target object, the command t.regenerateAll completely
regenerates code for the Stateflow charts in that target’s model.

See Also The methods build, rebuildAll, generate, and make

4-29

set

Purpose Set specified properties with the specified values

Syntax thisObject.set(propName,value,...)

Note Arguments can consist of an indefinite number of property (name,
value) pairs.

Description The set method sets the value of a specified property or sets the values
of a set of specified properties for this object. You specify properties and
values through pairs of property (name, value) arguments.

The get method is also vectorized so that it sets an m-by-n cell array of
values for an array of m objects and an array of n properties.

Arguments thisObject The object for which the specified property is set.
Can be any Stateflow object.

propName String name of the property to set (e.g., 'FontSize').
Can also be a cell array of m property names.

value New value for the specified property. Can be a cell
array of m-by-n values if thisObject is an array of
m objects and propName is an array of n property
names.

Returns None

Example The following command sets the Name and Description properties of
the State object s:

s.set('Name', 'Kentucky', 'Description', 'Bluegrass State')

4-30

set

The following command sets the Position property of the State object s:

s.set('Position',[200,119,90,60])

4-31

setCodeFlag

Purpose Set the specified code flag to the value you specify

Syntax thisTarget.setCodeFlag(name,value)

Description The setCodeFlag method sets the value of a code flag whose name you
specify.

Arguments thisTarget Target object for which to set code flag.

name String name of code flag. See CodeFlagsInfo Property
of Targets for a list of these names.

value Value of code flag. Can be of any type.

Flag values can vary in type. Use the property CodeFlagsInfo to obtain
the type for a particular flag.

Returns None

Example Assume that the Target object x represents the simulation target sfun
for the loaded model. If m is the Stateflow machine object for this model,
you can obtain x with the following command:

x = m.find('-isa','Stateflow.Target','-and', 'Name','sfun')

The simulation target has two code flags: debug and echo. You can
verify this by looking at the CodeFlagsInfo property of x with the
following command:

x.CodeFlagsInfo.name

In the Stateflow user interface the debug code flag is enabled or
disabled through the Enable debugging/animation check box in the
Coder Options dialog. By default, this flag is turned on (==1) for the
simulation target, which you can verify with the following command:

4-32

setCodeFlag

t.getCodeFlag('debug')

If you want to disable debugging, enter the following command:

t.setCodeFlag('debug',0)

See Also The method getCodeFlag

4-33

sourcedTransitions

Purpose Return the transitions that have this object as their source

Syntax transitions = thisObject.sourcedTransitions

Description The sourcedTransitions method returns all inner and outer
transitions that have their source in this object.

Arguments transitions Source object of the returned transitions. Can be of
type State, Box, Function, or Junction.

Returns transitions Array of all transitions whose source is this object

Example Suppose that a chart contains three states, A, B, and state A1, which is
contained by state A. The chart also has three transitions: one from
A to B labeled AtoB, one from B to A labeled BtoA, and one from the
inner edge of A to its state A1 (inner transition) labeled AtoA1. If State
object sA represents state A, the command sA.sourcedTransitions
returns two transitions: the outer transition labeled AtoB and the inner
transition labeled AtoA1.

4-34

Stateflow.Box

Purpose Constructor for creating a box

Syntax box_new = Stateflow.Box(parent)

Description The Stateflow.Box method is a constructor method for creating boxes
in a parent chart, state, box, or function, that returns a handle to an
Event object for the new function.

Arguments

parent Handle to an object for the parent chart, state, box, or
function of the new box

Returns box_new Handle to the Box object for the new box

Example If sA is a handle to a State object for an existing state A, the following
command creates a new box parented (contained by) state A:

box_new = Stateflow.Box(sA)

The new box is unnamed and appears in the upper left-hand corner
inside state A. box_new is a handle to a Box object for the new box.

4-35

Stateflow.Data

Purpose Constructor for creating a data

Syntax data_new = Stateflow.Data(parent)

Description The Stateflow.Data method is a constructor method for creating data
for a parent machine, chart, state, box, or function, that returns a
handle to the Data object for the new data.

Arguments parent Handle to an object for the parent machine, chart, state,
box, or function of the new data

Returns

data_new Handle to the Data object for the new data

Example If sA is a handle to a State object for an existing state A, the following
command creates a new data parented (contained by) state A:

data_new = Stateflow.Data(sA)

The new data is named 'data' with an incremented integer suffix to
distinguish additional creations. data_new is a handle to the Data
object for the new data.

4-36

Stateflow.EMFunction

Purpose Constructor for creating an Embedded MATLAB function

Syntax efunction_new = Stateflow.EMFunction(parent)

Description The Stateflow.EMFunction method is a constructor method for
creating an Embedded MATLAB function in a parent chart, state, box,
or graphical function. It returns a handle to the EMFunction object for
the new Embedded MATLAB function.

Arguments parent Handle to parent chart or state of the new Embedded
MATLAB function

Returns efunction_new Handle to a Function object for the new Embedded
MATLAB function

Example If sA is a handle to a State object for the existing state A, the following
command creates a new Embedded MATLAB function parented
(contained by) state A:

efunction_new = Stateflow.EMFunction(sA)

The new Embedded MATLAB function is unnamed and appears in the
upper left corner inside of state A in the diagram editor. efunction_new
is a handle to the EMFunction object, which you use to rename the
function, set its properties, and execute its methods.

4-37

Stateflow.Event

Purpose Constructor for creating an event

Syntax event_new = Stateflow.Event(parent)

Description The Stateflow.Event method is a constructor method for creating an
event for a parent machine, chart, state, box, or function, that returns a
handle to an Event object for the new event.

Arguments parent Handle to parent machine, chart, state, box, or function
of new event

Returns event_new Handle to the Event object for the new event

Example If sA is a handle to a State object for an existing state A, the following
command creates a new event parented (contained by) state A:

event_new = Stateflow.Event(sA)

The new event is named 'event' with an incremented suffix to
distinguish additional creations . event_new is a handle to an Event
object for the new event that you use to rename the event, set its
properties, and execute Event methods for the event.

4-38

Stateflow.Function

Purpose Constructor for creating a function

Syntax function_new = Stateflow.Function(parent)

Description The Stateflow.Function method is a constructor method for creating
functions in a parent chart, state, box, or function, that returns a handle
to a Function object for the new function.

Arguments parent Handle to parent chart or state of the new function

Returns function_new Handle to a Function object for the new function

Example If sA is a handle to a State object for the existing state A, the following
command creates a new function parented (contained by) state A:

function_new = Stateflow.Function(sA)

The new function is unnamed and appears in the upper left corner
inside of state A in the diagram editor. function_new is a handle to
the Function object for the new function that you use to rename the
function, set its properties, and execute its methods.

4-39

Stateflow.Junction

Purpose Constructor for creating a junction

Syntax junc_new = Stateflow.Junction(parent)

Description The Stateflow.Junction method is a constructor method for creating a
junction in a parent chart, state, box, or function, that returns a handle
to the Junction object for the new junction.

Arguments parent Handle to the object for the parent chart, state, box, or
function of the new junction

Returns junc_new Handle to the Junction object for new junction

Example If sA is a handle to a State object for the existing state A, the following
command creates a new junction parented (contained by) state A:

junc_new = Stateflow.Junction(sA)

The new junction appears in the middle of state A in the diagram editor.
junc_new is a handle to the Junction object for the new junction that
you use to set its properties, and execute its methods.

4-40

Stateflow.Note

Purpose Constructor for creating a note

Syntax note_new = Stateflow.Note(parent)

Description The Stateflow.Note method is a constructor method for creating notes
for a parent chart, state, box, or function, that returns a handle to the
Note object for the new note.

Arguments parent Handle to the object for the parent chart, or subchart for
the new note

Returns note_new Handle to the Note object for the newly created note

Example If sA is a handle to a State object for the existing state A, the following
command creates a new note parented (contained by) state A:

note_new = Stateflow.Note(sA)

The new note is placed in the upper left-hand corner of state A in the
diagram editor, but is invisible because it has no text content. note_new
is a handle to the Note object for the new note, that you use to set its
text content with a command like the following:

note_new.Text = 'This is a note'

4-41

Stateflow.State

Purpose Constructor for creating a state

Syntax state_new = Stateflow.State(parent)

Description The Stateflow.State method is a constructor method for creating a
state for a parent chart, state, box, or function, that returns a handle
the State object for the new state.

Arguments parent Handle to the object for the parent chart, state, box, or
function for the new state

Returns state_new Handle to State object for newly created state

Example If sA is a handle to a State object for the existing state A, the following
command creates a new state parented (contained by) state A:

state_new = Stateflow.State(sA)

The new state appears in the upper left-hand corner of state A in the
diagram editor. state_new is a handle to the State object for the new
state that you use to rename the state, set its properties, and execute
its methods.

4-42

Stateflow.Target

Purpose Constructor for creating a target

Syntax target_new = Stateflow.Target(parent_m)

Description The Stateflow.Target method is a constructor method for creating a
target for a parent machine, that returns a handle to the Target object
for the new target.

Arguments parent_m Handle to object for the parent machine of the new target

Returns target_new Handle to the Target object for the newly created
target

Example The following command creates a new target for the machine with the
Machine object whose handle is pm:

target_new = Stateflow.Target(pm)

The preceding command creates a custom target with name untitled.
target_new is a handle to the Target object of the new target which
you can use to rename and set properties for the target. The following
command renames the new target to rtw, thus making it the Real-Time
Workshop® (RTW) target for its parent machine:

target_new.Name = 'rtw'

4-43

Stateflow.Transition

Purpose Constructor for creating a transition

Syntax transition_new = Stateflow.Transition(parent)

Description The Stateflow.Transition method is a constructor method for
creating transitions in a parent chart, state, box, or function that
returns a handle to a Transition object for the new transition.

Arguments parent Handle to parent chart, state, box, or function of new
transition

Returns transition_new Handle to Transition object for the new transition

Example If sA is a handle to a State object for the existing state A, the following
command creates a new transition parented by state A:

transition_new = Stateflow.Transition(sA)

The new transition is unlabeled and appears in the upper left corner
of the chart in the diagram editor. transition_new is a handle to the
Transition object for the new transition that you use to rename the
transition, set its properties, and execute its methods.

4-44

Stateflow.TruthTable

Purpose Constructor for creating a truth table

Syntax truth_table_new = Stateflow.TruthTable(parent)

Description The Stateflow.TruthTable method is a constructor method for
creating truth tables in a parent chart, state, box, or function, that
returns a handle to a Truth Table object for the new truth table.

Arguments parent Handle to parent chart or state of new truth table

Returns truth_table_new Handle to Truth Table object for new truth table

Example If sA is a handle to a State object for the existing state A, the following
command creates a new truth table parented (contained by) state A:

truth_table_new = Stateflow.TruthTable(sA)

The new truth table is unnamed and appears in the upper left corner
inside of state A in the diagram editor. truth_table_new is a handle to
the Truth Table object for the new truth table that you use to rename
the truth table, set its properties, and execute its methods.

4-45

struct

Purpose Return a MATLAB structure containing the property settings of this
object

Syntax propList = thisObject.struct

Description The struct method returns and displays a MATLAB structure
containing the property settings of this object.

Note You can change the values of the properties in this structure just
as you would a property of the object. However, the MATLAB structure
is not a Stateflow object and changing it does not affect the Stateflow
model.

Arguments transitions The object for which to display property settings.
Can be any Stateflow object type.

Returns propList MATLAB structure listing the properties of this object

Example If State object sA represents a state A, the command x = sA.struct
returns a MATLAB structure x. You can use dot notation on x to
report properties or set the values of other variables. For example,
the command y=x.Name sets the MATLAB variable y to the value of
the Name property of state A, which is 'A'. The command x.Name =
'Kansas' sets the Name property of x to 'Kansas' but does not change
the Name property of state A.

4-46

up

Purpose Return the parent object of this object

Syntax parentObject = thisObject.up

Description The up method returns a handle to the object that contains an this
object.

Arguments thisObject Object for which to return parent (containing)
object

Returns parentObject Object containing thisObject

Example Assume that a Stateflow diagram has two states, A and B, and state
A contains state B. If the object sB represents the state B, then the
command

p = sB.up

returns a handle p to the parent of B, which is state A.

4-47

view

Purpose Make this object visible for editing

Syntax thisObject.view

Description The view method opens the object in its appropriate editing
environment as follows:

• For Chart objects, the view method opens the chart in a diagram
editor, if it is not already open, and brings it to the foreground.

• For State, Box, Function, Note, Junction, and Transition objects, the
view method does the following:

a Opens the chart containing the object in a diagram editor if it is
not already open.

b Highlights the object.

c Zooms the object’s diagram editor to the level of full expanse of the
object’s containing state or chart.

d Brings the diagram editor for this object to the foreground.

• For Truth Table objects, the view method opens the truth table editor
for this truth table:

• For Event, Data, and Target objects, the view method opens the
Explorer window.

Arguments thisObject Object for which to display editing environment. Can
be an object of type Chart, State, Box, Function, Truth
Table, Note, Transition, Junction, Event, Data, or
Trigger.

Returns None

4-48

zoomIn and zoomOut

Purpose Zoom in or out on this chart

Syntax thisChart.zoomIn
thisChart.zoomOut

Description The methods zoomIn and zoomOut cause the Stateflow diagram editor
window for this chart to zoom in or zoom out, respectively, by 20
percentage points.

Note The zoomIn and zoomOut methods do not open or give focus to the
Stateflow diagram editor for this chart.

Arguments thisChart Chart object to zoom in or out on.

Returns None

Example If the Chart object ch represents a Stateflow chart at the zoom level of
100%, the command ch.zoomIn raises the zoom level to 120%.

4-49

Index

IndexA
accessing existing objects (API)

with the find method 1-27
API

See Stateflow API 1-3

B
BadIntersection property (API) 1-25
behavioral properties and methods (API) 2-25
Box object (API)

description 1-6
methods 3-34
properties 3-32

build method (API) 4-4

C
Chart object (API)

accessing 1-10
create new objects in 1-11
methods 3-25
open 1-11
properties 3-17

classhandle method (API) 4-5
Clipboard object (API)

connecting to 1-37
copying 1-33
description 1-6
methods 3-9

connecting to
Clipboard object (API) 1-37
Editor object (API) 1-37
Stateflow objects (API) 1-23

constructor for Stateflow objects (API) 1-23
containment of Stateflow objects 1-25
copy method (API) 4-6

features and limitations 1-33
copying objects (API)

by grouping (recommended) 1-34

copy method 1-33
Data, Event, and Target objects 1-35
individual objects 1-35
overview 1-33
using the Clipboard object 1-33

create (API)
handle to Stateflow objects (API) 1-23
new model and chart (API) 1-9
new objects in chart (API) 1-11
new state (API) 1-11
object containment 1-25
Stateflow objects (API) 1-23
transition (API) 1-12

D
Data object (API)

methods 3-65
properties 3-60

default transitions
creating in API 1-40

defaultTransitions method (API) 4-7
delete method (API) 4-8 4-10

example 1-26
deployment properties and methods (API) 2-30
destroying Stateflow objects (API) 1-26
dialog method (API) 4-9
disp method (API) 4-10
displaying

enumerated values for properties
(API) 1-22

properties and methods (API) 1-20
subproperties (API) 1-21

dot (.) notation (API)
nesting 1-18

E
Editor object (API)

connecting to 1-37

Index-1

Index

description 1-6
graphical changes 1-37
methods (API) 3-8
properties 3-7

Event object (API)
methods 3-69
properties 3-66

F
find method (API) 4-11

examples 1-9 to 1-10
how to use 1-27

function notation for API methods 1-18
Function object (API)

description 1-6
methods 3-38
properties 3-35

G
generate method (API) 4-15
get method (API) 4-16

examples 1-20
getting and setting properties of

objects 1-31
getCodeFlag method (API) 4-17
graphical properties and methods (API) 2-12

H
help method (API) 4-19

example 1-20

I
innerTransitions method (API) 4-20

J
Junction object (API)

properties 3-58

L
labels

multiline labels using API 1-39
listing

enumerated values for properties
(API) 1-22

properties and methods (API) 1-20
subproperties (API) 1-21

M
Machine object (API)

accessing 1-9
description 1-6
methods 3-16
properties 3-12

make method (API) 4-21
MATLAB

API scripts 1-43
methods (API)

description of 1-7
displaying 1-20
function notation 1-18
naming 1-17
nesting 1-18
of Box object 3-34
of Chart object 3-25
of Clipboard object 3-9
of Data object 3-65
of Editor object 3-8
of Event object 3-69
of Function object 3-38
of Machine object 3-16
of Note object 3-52
of State object 3-30
of Transition object 3-57
of Truth Table object 3-42 3-49

Index-2

Index

methods method (API) 4-22
example 1-20

N
naming of properties and methods (API) 1-17
Note object (API)

methods 3-52
properties (API) 3-50

O
objects (API)

copying 1-33
getting and setting properties 1-31

outerTransitions method (API) 4-23
outputData method (API) 4-24
overlapping object edges 1-25

P
parse method (API) 4-26
pasteTo method (API) 4-27
properties (API)

description of 1-7
displaying 1-20
displaying enumerated values for 1-22
displaying subproperties 1-21
getting and setting 1-31
naming 1-17
nesting 1-18
of Box object 3-32
of Chart object 3-17
of Data object 3-60
of Editor object 3-7
of Event object 3-66
of Function object 3-35
of Junction object 3-58
of Machine object 3-12
of Note object 3-50
of State object 3-26

of Target object 3-70
of Transition object 3-53
of Truth Table object 3-39 3-47

properties and methods (API)
behavioral 2-25
deployment 2-30
graphical 2-12
structural 2-21
utility and convenience 2-35

Q
Quick Start

Stateflow API 1-9

R
rebuildAll method (API) 4-28
regenerateAll method (API) 4-29
Root object (API)

access 1-9
description 1-5

S
saving

Simulink model (API) 1-16
script of API commands 1-43
set method (API) 4-30
setCodeFlag method (API) 4-32
sfclipboard method (API)

example 1-37
sourcedTransitions method (API) 4-34
State object (API)

description 1-6
methods 3-30
properties 3-26

Stateflow API
Box object 1-6
Chart object (API), accessing 1-10
Clipboard object 1-6

Index-3

Index

common properties and methods 1-7
create new model and chart 1-9
Editor object (API) 1-6
Function object 1-6
Machine object 1-6
Machine object (API), access 1-9
methods of objects 1-7
naming and notation 1-17
object hierarchy 1-4
open chart 1-11
overview 1-3
properties of objects 1-7
Quick Start 1-9
references to properties and methods 1-8
Root object 1-5 1-9
State object 1-6
unique properties and methods 1-7

Stateflow.State method (API) 4-35 to 4-43
4-45

states
create (API) 1-11
label, multiline (API) 1-39

struct method (API) 4-46
structural properties and methods (API) 2-21
supertransitions

working with in the API 1-41

T
Target object (API)

properties 3-70
transition labels

multiline (API) 1-39
Transition object (API)

labels, multiline 1-39
methods 3-57
properties 3-53

transitions
create (API) 1-12
default transitions (API) 1-40
supertransitions in the API 1-41

Truth Table object (API)
methods 3-42 3-49
properties 3-39 3-47

U
utility and convenience properties and

methods (API) 2-35

V
view method (API) 4-47 to 4-48

Z
zoomIn and zoomOut methods (API) 4-49

Index-4

	toc
	Using the API
	Overview of the Stateflow API
	What Is the Stateflow API?
	Stateflow API Object Hierarchy
	Getting a Handle on Stateflow API Objects
	Using API Object Properties and Methods
	API References to Properties and Methods

	Quick Start for the Stateflow API
	Create a New Model and Chart
	Access the Model Object
	Access the Chart Object
	Create New Objects in the Chart

	Accessing the Properties and Methods of Objects
	Naming Conventions for Properties and Methods
	Using Dot Notation with Properties and Methods
	Nesting Dot Notation

	Using Function Notation with Methods

	Displaying Properties and Methods
	Displaying Properties
	Displaying the Names of Methods
	Displaying Property Subproperties
	Displaying Enumerated Values for Properties

	Creating and Destroying API Objects
	Creating Stateflow Objects
	Establishing an Object's Parent (Container)
	Graphical Object Parentage
	Nongraphical Object Parentage

	Destroying Stateflow Objects

	Accessing Existing Stateflow Objects
	Finding Objects
	Finding Objects at Different Levels of Containment
	Finding Child Objects
	Finding a Parent Object

	Retrieving Recently Selected Objects
	Getting and Setting the Properties of Objects

	Copying Objects
	Accessing the Clipboard Object
	copy Method Limitations
	Copying Graphical Objects

	Copying by Grouping (Recommended)
	Copying Objects Individually

	Using the Editor Object
	Accessing the Editor Object
	Changing the Stateflow Display

	Entering Multiline Labels
	Creating Default Transitions
	Making Supertransitions
	Creating a MATLAB Script of API Commands

	API Properties and Methods by Use
	Reference Table Column Descriptions
	Access Methods
	Code Generation and Target Building
	Code Generation and Build Methods
	Code Generation Properties
	Custom Code Properties

	Display Control
	Display Methods
	Display Properties

	Graphical Appearance
	Color Properties
	Drawing Properties
	Font Properties
	Position Properties
	Text Properties

	Creating and Deleting Objects
	Containment
	Data Definition Properties
	Debugging Properties
	Identifiers
	Interface to Simulink
	Machine (Model) Identifier Properties
	Truth Table Construction Properties

	API Properties and Methods — By Category
	Reference Table Columns
	Constructor Methods
	Editor Properties
	Editor Methods
	Clipboard Methods
	All Object Methods
	Root Methods
	Machine Properties
	Machine Methods
	Chart Properties
	Chart Methods
	State Properties
	State Methods
	Box Properties
	Box Methods
	Graphical Function Properties
	Graphical Function Methods
	Truth Table Properties
	Truth Table Methods
	Truth Table Chart Properties
	Truth Table Chart Methods
	Embedded MATLAB Function Properties
	Embedded MATLAB Function Methods
	Note Properties
	Note Methods
	Transition Properties
	Transition Methods
	Junction Properties
	Junction Methods
	Data Properties
	Data Methods
	Event Properties
	Event Methods
	Target Properties
	CodeFlagsInfo Property of Targets

	Target Methods

	API Methods — Alphabetical List
	List of API Methods

	Index

